
HD (in) Processing
Andrés Colubri

Design|Media Arts dept., UCLA
Broad Art Center, Suite 2275

Los Angeles, CA. 90095-1456
+1 310 825 9007

acolubri@ucla.edu

Abstract
In this paper I describe the new GLGraphics library for the
Processing programming language and environment. This
library integrates Graphics Processing Unit(GPU)-accelerated
effects and textures into the Processing API (Application
Program Interface). GLGraphics solves the current limitations of
Processing when handling High-Definition video and images in
real-time, while maintaining the ease and familiarity of the
existing API. This library makes programming with standard
shading languages (such as GLSL and Cg) more accessible to
the visual artist/designer who uses Processing for creating
computer-based artworks. GLGraphics also brings to Processing
techniques of GPGPU (General Processing on GPU), which can
substantially speed-up simulations of particle systems and other
types of complex real-time effects. The usefulness of this library
becomes apparent when considering today's intense work in the
contexts of interactive installations, augmented reality, data
visualization, computer vision, etc., where the need for real-time
processing of large amounts of data has become a constant
necessity. GLGraphics is undergoing active development at this
time, but it already has a significant level of usability and
performance. It is an open-source project, released under the
GPL. The source code, as well as binary packages,
documentation and tutorials can be accessed from this website:
http://users.design.ucla.edu/~acolubri/processing/glgraphics/hom
e/index.html

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object oriented
programming.

D.1.5 [Computer Graphics]: Graphics Utilities.

J.5 [Arts and Humanities]: Arts, fine and performing.

General Terms
Algorithms, Documentation, Computer Graphics, Digital Arts

Keywords
Processing, OpenGL, shader, texture, GLSL, Cg, library, effect,
real-time, HD, GPU, video, filter

1.Introduction
Processing [1] is a widely used language designed as a learning
environment as well as a production tool for digital artists. It
was originally created by Casey Reas and Ben Fry in 2001 at the
Aesthetics and Computation Group at the MIT Media Lab. One
reason for its popularity is the simplicity of the programming
environment and the convenient syntax of the language.

On the one hand, with the increased popularity of interactive
installations, techniques of augmented reality, computer vision,
utilization of HD content, etc., the need for real-time processing
of large amounts of data has become a constant necessity in the
digital arts.

On the other hand, the rapid development of GPUs is turning
them into very powerful parallel processors which can be used
not only to render very complex graphics in real-time, but also
to speed-up the types of computations mentioned in the
previous paragraph. Since the functionalities of modern
programmable GPUs are accessible through the standard
graphics library OpenGL [2], we have built GLGraphics on top
of OpenGL in order to encapsulate some of these functionalities
and to make them easily available in Processing.

Summarizing, the GLGraphics library has the three following
goals:

1) To integrate OpenGL textures and GPU texture effects into
the Processing API by means of its library mechanism.

2) To allow the generation of real-time effects on high-
resolution media such as HD videos and large images.

3) To bring closer to visual artists using Processing the
techniques of GPGPU, which turn the graphics chip into a
parallel co-processor able to handle very quickly certain types of
complex simulations and effects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACE’08, December 3–5, 2008, Yokohama, Japan.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. Description of the library
GLGraphics consists in a collection of classes that wraps-up
different OpenGL features, such as textures, GPU shaders,
Frame Buffer Objects (FBO) and Vertex Buffer Objects (VBO),
etc. The main two classes of the library are GLTexture and
GLTextureFilter. GLGraphics also includes a new Processing
renderer that enables off-screen drawing, among other features.

GLTexture is a descendant of the core class PImage. Hence, the
use of GLTexture combines seamlessly with the already existing
image-handling functionality, while adding new methods to
manipulate OpenGL textures.

GLTextureFilter encapsulates GPU-accelerated texture effects
called "filters". Examples of these filters are Gaussian blur and
edge detection, High Dynamic Range (HDR) tone mapping, etc.,
and also more complex GPU effects like the simulation of
particle systems, which can be expressed as a combination of
multiple texture filters chained together.

2.1OpenGL textures
The GLTexture class brings support for OpenGL textures to the
core PImage class. The texture can be thought as a new layer
added on top of the pixels property of PImage. An image is
copied from the canvas of the PImage to the pixels array by
calling the loadPixels() function. Similarly, the pixel data can be
transferred to the texture by calling loadTexture(). In a reverse
order, the updateTexture() copies the texture data to the pixels
property, while updatePixels() puts the pixels into the drawing
canvas.

However, transferring texture data from the GPU memory to the
pixels array on CPU memory in order to draw the texture on the
screen is a slow operation, specially for large textures. In order
to avoid this bottleneck, the GLGraphics library includes a new
renderer which draws OpenGL textures directly without
requiring any GPU-CPU transfer. The GLGraphics renderer can
also be used as an off-screen drawing surface. This allows to
create multiple independent canvases inside the same Processing
sketch.

A GLTexture can be initialized in different ways, as shown in
the following code snippets:

// Loading an image directly upon creation:

tex = new GLTexture(this, "image.jpg");

// Creating a texture of a given size:

tex = new GLTexture(this, 200, 200);

// Created empty, sized to a given resolution, and then

// using the pixels array to put data in it:

tex = new GLTexture(this);

tex.init(100, 50);

tex.loadPixels();

for (int i = 0; i < 5000; i++) tex.pixels[i] = 0xff000000;

tex.loadTexture();

2.2Texture filters
A texture filter, encapsulated in the GLTextureFilter class, is
basically a GPU shader that operates on an input texture or
group of textures and writes the output of the rendering
operation to another texture(s). The shader can be imagined as a
computational kernel that is executed on the GPU, such as a
Gaussian blur or emboss effect [3-6]. One advantage of this
approach is that the calculation is actually off-loaded to the
GPU, freeing CPU resources for other operations, such as
handling user interaction, general flow of the program, etc.

The configuration of a filter is saved in a xml file, where the
names of the shaders that define the filter are stored. An entire
shader program can consist in a vertex, geometry and fragment
shaders, corresponding to each one of the programmable stages
of modern GPUs. With the latest release GLGraphics at the time
of writing (0.8), the shaders have to coded in the OpenGL
Shading Language (GLSL or GLslang) [3]. Future releases of
the library will include support for the Cg shading language
from Nvidia [4].

A texture filter works following the Processing API for the
built-in image filters, and the following is a sample program that
applies a simple blur filter on a image loaded from the disk:

import processing.opengl.*;

import codeanticode.glgraphics.*;

size(200, 200, GLConstants.GLGRAPHICS);

// Initializing source and destination textures:

GLTexture texSrc = new GLTexture(this, "image.jpg");

GLTexture texDest = new GLTexture(this,

 texSrc.width, texSrc.height);

// Initializing filter:

GLTextureFilter blur = new GLTextureFilter(this,"blur.xml");

// Applying the filter on texture texSrc,

// and writing the result to texDest:

texSrc.filter(blur, texDest);

// Drawing the resulting image:

image(texDest, 0, 0, width, height);

In this particular example, the xml file just lists the filename of
the fragment shader that contains the Gaussian kernel, some
basic description strings and the number of input and output
textures supported by the filter, here one in both cases:

<filter name="gaussian blur">

 <description>3x3 Gaussian blur kernel</description>

 <fragment>blur.glsl</fragment>

 <textures input="1" output="1"></textures>

</filter>

The shader blur.glsl contains the GLSL code for a standard
Gaussian blur convolution kernel, as shown here:

uniform sampler2D src_tex_unit0;

uniform vec2 src_tex_offset0;

void main(void) {

 float dx = src_tex_offset0.s;

 float dy = src_tex_offset0.t;

 vec2 st = gl_TexCoord[0].st;

 // Apply 3x3 gaussian filter

 vec4 color = 4.0 * texture2D(src_tex_unit0, st);

 color += 2.0 * texture2D(src_tex_unit0,st + vec2(+dx,0.0));

 color += 2.0 * texture2D(src_tex_unit0,st + vec2(-dx,0.0));

 color += 2.0 * texture2D(src_tex_unit0,st + vec2(0.0,+dy));

 color += 2.0 * texture2D(src_tex_unit0,st + vec2(0.0,-dy));

 color += texture2D(src_tex_unit0,st + vec2(+dx,+dy));

 color += texture2D(src_tex_unit0,st + vec2(-dx,+dy));

 color += texture2D(src_tex_unit0,st + vec2(-dx,-dy));

 color += texture2D(src_tex_unit0,st + vec2(+dx,-dy));

 gl_FragColor = color / 16.0;

}

The uniform variables src_tex_unit0 and src_tex_offset0 in the
shader code above represent the first texture unit and the offset
of that texture. These names are a convention that has to be
necessarily followed by the GLSL shaders used in the
GLGraphics filters, otherwise the library cannot send the texture
data to the shader (i.e.: a second input texture unit has to be
named src_tex_unit1, and so on).

2.3 Floating-point textures
The GLGraphics library also adds support for floating-point
textures in Processing. These textures can store floating-point
values in each one of its four (RGBA = XYZW) components.
Another important concept in the context of GPGPU is that of
ping-pong textures [5, 6]. Since a texture could be only read or
write, but not both simultaneously, an operation that needs to
update a texture based on its previous values requires in fact
two textures that are swapped continuously. This is, after the
step where one of the textures has been used as input (read) and
the other as output (write), the role of the textures are
exchanged, so the one where the latest data was written to is
now used as input. This technique is called ping-pong, and there
is a class in GLGraphics called GLTexturePingPong which
facilitates this operation.

2.4 GPGPU: particle systems
Simulations of large particle systems constitute a type of
computation well suited for GPGPU acceleration [5, 6], given its
inherently parallel nature. The binary distribution of the library
comes with a couple of particle systems as examples. The
"Simple GPU Particle System" program implements a system
where the velocities of the particles are controlled by the

position and motion of the mouse. This example contains two
filters used as computational/rendering kernels: one to simulate
the motion of the particles, and another to draw the particles on
the screen. See "Figure 1" for a typical visual output of this
example.

Figure 1. Output of the SimpleGPUParticleSystem running
 more than 100,000 textured particles in real-time

More sophisticated particle systems can be implemented, as
exemplified by the "Painter" program also included with the
library (see "Figure 2"). In this algorithm, the gradient of the
luminance of the input image is averaged iteratively to generate
a vector field with many vortexes and flows [7]. The motion of
the particles follow this vector field. Since all the computations
are performed on the GPU, the effect can be applied on real-
time video.

Figure 2. Painterly-rendering algorithm implemented within
the GLGraphics framework. It uses a large particle system

to create the appearance of flowing paint in real-time.

2.5 HD playback
One particular weakness in Processing is the playback of high-
resolution video files, since the core video library is based on
Quicktime. There is no good integration between Quicktime and
Java, the underlying language on which Processing is based, and
this results in poor framerates when playing large videos.

Figure 3. Processing playing an 1080i HD clip (1920x800
pixels) at 30 fps in fullscreen mode, using the GLGraphics

and GSVideo libraries.

The open source multimedia framework GStreamer [8] works
better in combination with Processing than Quicktime, and this
makes possible to play high resolution video files through the
GSVideo library [9].

Figure 4. Processing playing an 1080i HD clip and applying
a GPU posterize filter on it.

GSVideo re-implements the API of the core video library with
GStreamer-java [10], and the playback performance results to be
substantially better. However, to obtain acceptable framerates
with HD movies, the rendering of the video frames has to be
accelerated through OpenGL (see "Figure 3"), using
GLGraphics.

The method consists in reading the frames with the GSMovie
object, and then copying the movie pixels into a GLTexture
object which is then rendered to the screen, as shown in the
following sample program:

import processing.opengl.*;

import codeanticode.gsvideo.*;
import codeanticode.glgraphics.*;

GSMovie movie;
GLTexture tex;
void setup() {
 size(640, 480, GLConstants.GLGRAPHICS);

 movie = new GSMovie(this, "hdclip.mov");

 movie.loop();

 tex = new GLTexture(this);
}
void movieEvent(GSMovie movie) {
 movie.read();
}
void draw() {
 background(0);
 if ((1 < movie.width) && (1 < movie.height)) {
 // Copy the latest movie frame into the texture tex:
 tex.putPixelsIntoTexture(movie);
 image(tex, 0, 0, width, height);
 }
}

Once the video frame is copied inside a GLTexture, further real-
time post-processing is possible with GPU filters. For example,
"Figure 4" shows the result of applying a posterize filter on a
1080i HD clip. With a relatively low-end graphics card, such as a
Nvidia Geforce 8400, the framerate remains above 25 fps.

3.Conclusions
Initial testing with the GLGraphics library has been highly
positive, since it shows that it is possible to apply real-time
filters on high-resolution images and video, while following
Processing's language and usage conventions.

Large particle systems can be successfully simulated within the
GLGraphics framework, with sizes up to 1,000,000 particles.

Since this library is an extension of pre-existing core
functionality, this opens-up the possibility of combining
previous techniques with the GPU-based approaches to create
new and original effects.

Future development of this library will add further options such
as Cg support and better hardware compatibility across as many
OpenGL2-compatible video cards as possible.

4.Acknowledgments
The author would like to thank Casey Reas and Ben Fry for
their comments and suggestions, and the Processing community
of users and developers for their constant feedback and
encouragement.

5.On-line resources
The homepage of the GLGraphics library is the following:

http://users.design.ucla.edu/~acolubri/processing/glgraphics/hom
e/index.html

In this site there is full access to the entire documentation of the
library, as well as usage examples. Source code and binary
packages are available at the sourceforge page of the project:

http://sourceforge.net/projects/glgraphics/

6.References
[1] Reas, C.E.B, Fry, F. 2007. Processing: A Programming

Handbook for Visual Designers and Artists. The MIT Press.

[2] Shreiner, D. 2006. The OpenGL Programming Guide
Version 2.0. Addison-Wesley Professional.

[3] Rost, R. J. 2005. OpenGL Shading Language. Addison-
Wesley Professional.

[4] Randima, F., Kilgard, M. 2003. The Cg Tutorial: The
Definitive Guide to Programmable Real-Time Graphics.
Addison-Wesley Professional .

[5] Pharr, M. 2005. GPU Gems 2: Programming Techniques
for High performance Graphics and General-Purpose
Computation. Addison-Wesley Professional.

[6] Nguyen, H. 2007. GPU Gems III. Addison-Wesley
Professional.

[7] Wang, C. M., Lee, J. S. 2004. Non-Photorealistic Rendering
for Aesthetic Virtual Environments. J. of Information
Science and Engineering. Vol. 20, Num. 5 (Sept. 2004),
923-948.

[8] GStreamer. Open source multimedia framework:
http://gstreamer.freedesktop.org/

[9] GSVideo. GStreamer video library for Processing:
http://users.design.ucla.edu/~acolubri/processing/gsvideo/h
ome/

[10] GStreamer-java. Java interface to the gstreamer framework:

 http://code.google.com/p/gstreamer-java/

	1. Introduction
	2. Description of the library
	2.1 OpenGL textures
	2.2 Texture filters
	2.3 Floating-point textures
	2.4 GPGPU: particle systems
	2.5 HD playback

	3. Conclusions
	4. Acknowledgments
	5. On-line resources
	6. References

