Reduced Cg statistical potentials can outperform
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Abstract

We developed a series of statistical potentials to recognize the native protein from decoys, particularly
when using only a reduced representation in which each side chain is treated as a single Cg atom.
Beginning with a highly successful all-atom statistical potential, the Discrete Optimized Protein Energy
function (DOPE), we considered the implications of including additional information in the all-atom
statistical potential and subsequently reducing to the Cg representation. One of the potentials includes
interaction energies conditional on backbone geometries. A second potential separates sequence local
from sequence nonlocal interactions and introduces a novel reference state for the sequence local
interactions. The resultant potentials perform better than the original DOPE statistical potential in decoy
identification. Moreover, even upon passing to a reduced Cg representation, these statistical potentials
outscore the original (all-atom) DOPE potential in identifying native states for sets of decoys.
Interestingly, the backbone-dependent statistical potential is shown to retain nearly all of the infor-
mation content of the all-atom representation in the Cg representation. In addition, these new statistical
potentials are combined with existing potentials to model hydrogen bonding, torsion energies, and
solvation energies to produce even better performing potentials. The ability of the Cg statistical
potentials to accurately represent protein interactions bodes well for computational efficiency in protein
folding calculations using reduced backbone representations, while the extensions to DOPE illustrate
general principles for improving knowledge-based potentials.
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An accurate free energy or scoring function to describe
protein interactions is central to many problems in
computational protein science (Anfinsen 1972, 1973;
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Pokala and Handel 2001; Taylor et al. 2002; Schueler-
Furman et al. 2005; Colubri et al. 2006). One important
goal of the scoring function is to recognize differences
between native and nonnative protein structures. The two
dominant classes of scoring functions are provided by
physical force fields and statistical potentials. Whereas
physical force fields are generally defined as the sum of
conventional contributions to interaction energies, sta-
tistical potentials determine energies from the observed
frequencies of occurrence in known protein structures.
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Several physical force fields are widely used in the
literature (Brooks et al. 1983; Jorgensen and Tiradorives
1988; Garcia and Sanbonmatsu 2002; Fujitsuka et al.
2004). All typically choose the nonbonded interaction
energy for a pair of atoms as the sum of contributions
from electrostatic and van der Waals interactions, while
bond length, bond angle, torsion angle, and improper
torsion angle energy functions are used to describe local
energetic contributions. However, in order for a physical
force field to properly describe the free energy of a
protein, these physical force fields must be combined with
dynamics simulations to include entropic contributions.
Given the large number of possible protein conformations,
this entropic calculation can be computationally prohibitive
and, thus, is often neglected when screening a set of decoys
for the native protein structure (Feig and Brooks 2002;
Fujitsuka et al. 2004). Some indications that all compact
protein structures have comparable entropies suggest that
even without an entropic calculation, physical force fields
may still be useful for recognizing native states of proteins
(Feig and Brooks 2002). Unfortunately, it is not yet clear
which physical force fields best represent reality, because
simulations of small peptides have demonstrated that these
force fields produce strikingly different dynamic and
equilibrium properties (Garcia and Sanbonmatsu 2002;
Hu et al. 2003; Mu et al. 2003; Zaman et al. 2003; Yoda
et al. 2004) due to differences in the torsional energies,
the most difficult interactions to model (Garcia and
Sanbonmatsu 2002; Zaman et al. 2003).

Statistical potentials have proven to be extremely
useful in protein folding simulations (Hubner et al.
2006) and structure predictions (Bowie et al. 1991; Sun
1993; O’Donoghue and Nilges 1997; Chiu and Goldstein
2000; Tobi and Elber 2000; Tobi et al. 2000; Colubri et al.
2006). For a given interaction, the free energy is obtained
from observed frequencies in a database of protein struc-
tures. Thus, statistical potentials are commonly designated as
knowledge-based or empirical potentials. Statistical poten-
tials have an extensive history (Hendlich et al. 1990; Casari
and Sippl 1992; Sippl 1993; Sun 1993; Bauer and Beyer
1994; Park and Levitt 1996; Bennaim 1997; Gilis and
Rooman 1997; O’Donoghue and Nilges 1997; Samudrala
and Moult 1998; Miyazawa and Jernigan 1999; Simons
et al. 1999; Gatchell et al. 2000; Zhang and Kim 2000; Lu
and Skolnick 2001; Melo et al. 2002; Betancourt 2003;
Buchete et al. 2004; Mukherjee et al. 2005; Fang and
Shortle 2006; Shen and Sali 2006).

A major limitation of statistical potentials lies in their
usual neglect of important nonadditive many-body inter-
actions for computational practicality and due to limited
experimental data (Bennaim 1997; Shen and Sali 2006).
For example, a certain degree of accuracy is lost by
assuming that the free energy is decomposable in a
pairwise additive form. Furthermore, because the rela-
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tionship between statistical potentials and the basic
principles of statistical mechanics are somewhat unclear
(Finkelstein et al. 1995; Bennaim 1997; Skolnick et al.
1997), some researchers prefer to derive statistical poten-
tials using probability theory alone (Samudrala and Moult
1998; Simons et al. 1999; Shen and Sali 2006; Solis and
Rackovsky 2006). Regardless of whether statistical poten-
tials are introduced based on the principles of statis-
tical mechanics or as purely probabilistic constructions,
the defining relations are generally the same.

The use of a statistical potential offers several practical
and theoretical benefits. For instance, some errors asso-
ciated with neglecting many-body interactions can be
diminished by carefully using conditional probabilities
that implicitly reproduce many-body effects while main-
taining the computational convenience of formal pairwise
additivity. The exploitation of this technique to improve
the recognition of native states represents a main focus of
this article. In principle, given a sufficiently rich training
set of protein structures and computational resources,
statistical potentials could be extended to include explicit
many-body contributions and thereby enhance accuracy.
Because of insufficient data and the computational com-
plexity associated with many-body interactions, this is not
a currently tractable goal, and we focus on the use of con-
ditional two-body interactions.

Recently, Shen and Sali (2006) developed the Discrete
Optimized Protein Energy function, DOPE, a statistical
potential whose distinguishing feature is its physically
reasonable treatment of the reference state probability
distribution function used in defining the free energy.
DOPE performs as well or better than all previous all-
atom energy functions in its ability to accurately identify
the native structure in a decoy set of incorrect protein
structures (Eramian et al. 2006; Shen and Sali 2006).
Moreover, DOPE has also been shown to be useful in
applications (Colubri et al. 2006; Eramian et al. 2006). In
particular, the protein structure prediction algorithm of
Sosnick, Freed, and coworkers uses a reduced Cg version
of DOPE wherein terms involving side-chain atoms
beyond the Cg-carbon are ignored (Colubri et al. 2006).
Because of DOPE’s success with decoy sets and its
physically appealing reference state, this statistical poten-
tial provides the starting point for our current studies.
Furthermore, because recent work has demonstrated the
superiority of DOPE over the leading energy functions,
(Eramian et al. 2006; Shen and Sali 2006), it suffices to
compare our statistical potentials to DOPE as a benchmark.

As mentioned above, Sosnick, Freed, and coworkers
(Colubri et al. 2006) used a reduced form of DOPE,
DOPE-Cg, in their protein structure prediction algorithm.
This reduced form employs a representation in which the
side chains (other than glycines) are represented with a
single Cg atom by simply ignoring all terms involving the
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non-Cg side-chain atoms. This reduced potential is able to
retain a correlation of R ~ 0.80-0.90 with respect to the
all-atom version of the statistical potential. In addition,
the final structures generated using the reduced statistical
potential have an appropriate density and chain geometry
that permits side chains to be readily added in a back-
bone-dependent manner using SCWRL (Canutescu et al.
2003; Colubri et al. 20006).

Importantly, the folding of the reduced Cg model
greatly diminishes the computational time as no time is
spent searching through the side-chain configuration
space during the folding algorithm. Nevertheless, it is
moderately successful in predicting the structure of small
proteins of various topologies given advanced, but coarse-
grained, knowledge of the protein’s local structure.
Undoubtedly, the algorithm’s performance can be
improved by building more accurate Cg statistical poten-
tials, a goal that provides the motivation for the present
work. We begin this process by constructing optimized
reduced statistical potentials to recognize the native
structures of proteins.

Reduced representations have been used with varying
success in the past (Sun 1993; Gilis and Rooman 1997;
Zhang and Kim 2000; Melo et al. 2002; Betancourt 2003;
Buchete et al. 2004; Fujitsuka et al. 2004; Kolinski and
Skolnick 2004; Rohl et al. 2004; Mukherjee et al. 2005;
Chen et al. 2006; Colubri et al. 2006). In order to
minimize the loss of information encountered by passing
to this reduced representation, our new statistical poten-
tials introduce explicit dependence upon backbone geom-
etry and primary sequence separation, respectively. Such
dependences have previously been utilized at both residue
and atomic resolution (Zhang and Kim 2000; Melo et al.
2002; Rohl et al. 2004; Fang and Shortle 2006). By
introducing this type of additional information, even after
the reduction to a Cg representation, our new energy func-
tions outperform the all-atom DOPE in their ability to
recognize the native structures of multiple proteins from
libraries of decoy structures.

Theory

Pairwise additive statistical potentials

The goal of a statistical potential is to use empirical
information compiled from a database of known protein
structures in order to derive a scoring function that
correlates well with the free energy of the protein. Most
treatments of statistical potentials are derived either from
the statistical mechanical Boltzmann distribution or, less
directly, through probability theory. Although the statis-
tical mechanical approach is simpler, the approximations
introduced for computational practicality have motivated
questions regarding the scientific validity of statistical

potentials. The probability theory approach is appealing
because it makes no direct reference to a particular
statistical distribution.

A careful treatment of the statistical mechanical
approach is included in the Appendix. For the present
purposes, we simply assume that the statistical potential
is decomposable into a pairwise additive form,

E(Fy,....7) = —kgTy In (N(”JIU))

7 \Neer(rilly)

where n is the number of atoms used in the calculation,
N (r,»j|I,»j) is the number of observations in the database,
NgrEer (r,»j|I,»j) is the number of observations that are
expected in the completely noninteracting reference
system that defines the zero of free energy, and /;; is the
added information that is specified (e.g., atom types,
residue types, sequence separation, etc.). This form of
the potential is generally only an approximation, and the
consequences associated with this approximation are
discussed in the Appendix.

The equation for the energy E requires three choices in
order to construct the statistical potential. The first choice
concerns which n atoms are used in calculating the
energy. Here, n is either taken to be all heavy atoms in
the protein (all-atom representation) or all backbone heavy
atoms together with the B3-carbon (Cg representation). The
second choice is associated with the added information /;;.
This added information can encode many-body effects to
lessen the severity of the pairwise additive assumption,
thereby rendering the Cg representation more accurate.
The information term chosen here always contains at least
the amino acid and atom identities. Finally, the third decision
concerns the reference state used to define the zero of free
energy. The treatment of these issues largely determines the
success of the statistical potential.

Discrete Optimized Protein Energy function (DOPE)

DOPE is a statistical potential that has recently been
designed by Shen and Sali (2006). DOPE performs as
well or better than existing statistical potentials and force
fields in recognizing the native state of proteins from
decoy sets (Eramian et al. 2006; Shen and Sali 2006).
DOPE has also performed favorably in applications to
protein structure prediction. The information term in
DOPE implies that the statistical potential distinguishes
the amino acid identity and atomic identity of both
interacting particles. These dependences are rendered
more explicit through the notation,

Vg iOP E = {crystalstructure,

aminoacididentity; ;, atomtypeidentity, ;},
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where i, j are labels specifying the two interacting atoms,
and where the notation also designates the use of a library
of high resolution X-ray structures.

The reference state defined by DOPE supposes that in
the absence of nonbonded interactions, atoms are dis-
tributed spherically and uniformly, independent of their
identity. The radius of this sphere is related to the radius
of gyration of the native protein by a = /5/3R¢. This
model is analytically tractable, and a detailed discussion
of this reference state is included in the Appendix. Figure
1 displays the radial probability distribution for a sphere
of radius @ = 24 A. DOPE provides the interaction
“energy score’’ of two atoms through the equation

EPOPE(
o N(I?iOPE>pggﬁE (rij)47rr2Ar

r,j) = —1In

)

where N (rij| ) is the number of times in the training
set that two atoms$ consistent with the information term

i N(I?]QPE) is the total num-

DOPE
Ii;

are separated by a distance ry;,

ber of atom pairs consistent with the information term
(within the cutoff distance), pRSFE(r) is the reference
probability density developed in the Appendix, Ar is the
bin size, and energy units are selected such that k7" = 1.
All proteins in the training set are assumed to be under
the same conditions. The total energy score of the protein

is the sum of E?™"(r;;) over all pairs i,j.
Inclusion of additional information

The primary goal of this article is to improve both all-
atom and Cg representations of statistical potentials by

Pror”(r;24)- 4m?
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Figure 1. Reference state used by DOPE for the case where the reference
sphere has radius a = 24 A and the cutoff distance for computing non-
bonded interactions is assumed to be at least 48 A. In actual appli-
cations, it is likely that a significantly shorter cutoff distance is used. Then,
this function must be normalized differently as the longer distance infor-
mation is irrelevant (see Appendix).
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incorporating several new dependences, and thereby
illustrate general principles for improving knowledge-
based potentials. Because DOPE has outperformed other
statistical potentials in numerous tests and has already
incorporated a physically appealing reference state for
nonbonded interactions, DOPE is the natural point of
departure for our studies. The reduced Cg representation
is of particular interest in view of the successful use of the
Cg version of DOPE in the prediction of native structures
(Colubri et al. 2006).

We introduce two new information terms into
DOPE. First, a dependence on distance in primary se-
quence is introduced to incorporate the influence of local
geometric constraints. The resulting modified statistical
potential is called DOPEyy (NN = NearestNeighbor).
Second, a dependence on local backbone geometry is
introduced though the explicit dependence on the back-
bone geometry, as defined by the Ramachandran basin
(RB) (Ramachandran et al. 1963) in which the &,
dihedral angles reside. This modification is termed
DOPE-Back.

The RB specifies the local structure of the protein
backbone and correlates with the secondary structure of
the protein. For applications to structure prediction, it is
advantageous to define DOPE-Back in terms of the RB
instead of the secondary structure directly. B-Sheets are
composed of residues in the polyproline II conformation
as well as authentic B conformers. Hence, the separation
of sheets into two RB adds additional specificity. Also,
Sosnick, Freed, and coworkers have recently shown that
the Monte Carlo search efficiency is greatly improved
when the RBs are fixed during the course of the
simulation (“‘intrabasin folding’) (Colubri et al. 20006).
As the DOPE-Back terms are conditional on each resi-
due’s RB, an intrabasin simulation wherein all the RBs
are fixed does not sample any discontinuities in the
energy surface due to a change in RB. However, since it
is possible to change the secondary structure without
changing the RB, discontinuities would become an issue
if DOPE-Back were to be formulated by specifying the
secondary structure. The RBs used here are defined as in
Figure 2A and are chosen in this manner for reasons to be
discussed later.

Previous work has included both a dependence on
sequence distance and backbone dependencies in some
form (Zhang and Kim 2000; Melo et al. 2002; Rohl et al.
2004; Fang and Shortle 2006). However, the importance
of the reference state has been understressed and most
often has been chosen in a rather unphysical fashion.
Thus, these potentials can be improved by introducing a
more physically meaningful reference state. Here, these
modifications are introduced systematically into the same
starting potential (DOPE) to assess the relative strengths
and weaknesses of each modification.
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Figure 2. (A) The four-basin system used to define DOPE-Back. The
basins called 3 and PPII are very common in 3-sheet structures. The og
basin contains helical geometries. The basin termed & comprises the rest of
the Ramachandran map. (B) The more conventional five-basin Ramachan-
dran map. The &-basin from A is the union of y and oy basins as well as the
portion of ag basin that corresponds to turn geometries.

Dependence on local backbone geometry: DOPE-Back

The first modification of DOPE, ‘“DOPE-Back,’ in-
volves the inclusion of a dependence upon the local
backbone geometry through a specific dependence on
the RB occupied by the residues containing each of the
two interacting atoms. This modification is designed to
recognize the fact that atoms interact differently depend-
ing on whether they are located in helical structures or
sheets.

If;wk = {crystalized, aminoacididentity; ;, atomtype, ;,

RamachandranBasinidentity; j}

Preliminary calculations also suggest that a backbone-
dependent statistical potential performs well in the Cg
representation. More specifically, an analysis of proba-
bility distributions for side-chain dihedral angles from
the Protein Data Bank (PDB) (Kouranov et al. 2006)
indicates that to a very good approximation, side-chain
conformations are independent of the identity and con-
formation of the neighboring resides. Nearest neighbors
exert a stronger influence on the protein backbone than
on the side chains. However, there are nontrivial depen-
dences of the side-chain conformations on the amino acid
identity and on the backbone conformation of the residue
in question. Consequently, by specifying the amino acid
identity and backbone conformation of a residue, most of
the information that determines the side-chain geometry
is incorporated in the statistical potential. Hence, it is
likely that a Cg representation would retain most of the
relevant information about the side chain.

The RBs of the DOPE-Back statistical potential are
defined using the four-basin system represented in Figure
2A. The ag, B, and PPII basins are strongly populated
by most amino acids. The agr basin describes residues
in helical geometries, while the B and PPII basins are
prevalent for residues in (3-strands. The final basin, ¢, is
actually a combination of several distinct energy minima.
A version of DOPE-Back has been devised using the more
conventional basin definitions represented in Figure 2B.
However, the definitions presented in Figure 2A are
preferable for DOPE-Back due to limited statistics for
the o and vy basins, as well as the prominence of more
authentic helical geometries in the smaller ag basin used
in Figure 2A.

Because the RB occupancy does not enter into the
description of the reference noninteracting system, the
only difference between the DOPE-Back and DOPE
statistical potentials is that the former contains a speci-
fication of the RB of the residue in addition to the amino
acid and atom identities. The DOPE-Back energy score is
correspondingly given by

N (rglrtect)

NI REE ()

Ef?d‘ (rj) =—1In

in units where kT = 1, and X-ray structures for all pro-
teins in the training set are assumed to be taken under the
same conditions.

Pairwise additive atomic interaction ‘“‘energy scores’
are used to evaluate the helix—helix (E”~), helix—strand
(EH’S), strand—strand (ES’S), and unstructured (E?) inter-
action energy scores by summing over all consistent
atom-pairs. The strand-strand energy consists of the
sum of the B-f, B-PPII, and PPII-PPII energies. Given
the approximation that energies are assumed to be
pairwise additive, it is not obvious how to weight these
various interactions. The complete DOPE-Back interac-
tion energy score is, therefore, defined to be a linear
combination of these four energy scores.

EBACK _ )\H,HEHiH +)\H7SEH75 +)\S,SES7S +/\éEb,

where we allow for the possibility of unequal coefficients
{\} to compensate for the truncation at pair interactions.
The coefficients {\} are eventually chosen to optimize
the ability of the statistical potential to identify the native
structure of the protein.

Dependence on distances in primary sequence: DOPEny

The second modified potential is designed to recognize
the fact that proximate amino acids in primary sequence
have geometrically constrained interatomic separations.
Therefore, the complete statistical potential is expressed
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as the sum of sequence local contributions that reflect the
geometric constraints and sequence nonlocal contribu-
tions that omit the geometrically biased local interactions.
The information term of DOPE)yy is therefore given by
Iivjv :{crystalized, aminoacididentity, ;, atomtype, ;,
SequenceSeperation(i,j)}

where the sequence separation is defined on the residue
level (i.e., atoms on the same residue have vanishing
sequence separation).

The distance in primary sequence necessary to render
interactions truly ‘‘nonlocal” and independent of local
geometric constraints is not obvious. We therefore gen-
erate separate local potentials to describe i,i * 1 inter-
actions (DOPE-NI = Neighbors 1), i,i = 2 interactions
(DOPE-N2 = Neighbors 2), i,i = 3 interactions (DOPE-
N3 = Neighbors 3), and i,i = 4 interactions (DOPE-N4 =
Neighbors 4). These energies are not symmetric in
amino acid or atom identities due to the directionality of
the polypeptide backbone that distinguishes i,i+j and i,i—j
interactions. Likewise, we determine a corresponding set of
nonlocal potentials that only include interactions of resi-
dues separated in sequence by at least one other amino acid
(DOPE-N = 2), by at least two other amino acids (DOPE-
N = 3), by at least three other amino acids (DOPE-N = 4),
and by at least four other amino acids (DOPE-N = )5).

The local and nonlocal contributions are used to
produce four distinct versions of DOPEyy by combining
each of the four nonbonded potentials with the remaining,
missing local terms, again with adjustable coefficients,

EN17N27~-Nm7N2(m+1) _ aNENZ(m+1) + iaiENi-
i=1

The nomenclature DOPE-NI-N2-----Nm-N = (m + 1)
indicates that the sequence nonlocal term includes inter-
actions of all atoms separated in sequence by at least m
other residues, and, consequently, there are m local en-
ergy functions. The statistical potentials DOPE-NI-N =
2 and DOPE-NI-N2-N = 3 are found to perform best in
recognizing the native state. Hence, these two statistical
potentials are designated as DOPEyy in the Results and
Discussion section. Supplemental online material presents a
detailed discussion of the performance of the local terms,
each nonbonded term, and other versions of DOPEyy,.

Just as the local contributions in DOPEy,y are separated
from the nonlocal ones because the former are geometri-
cally constrained, the spherical reference state used in
DOPE is insufficient to describe the sequence local
interactions in the noninteracting reference system. The
reference state is thus defined to respect all bond lengths
and bond angles, as well as the rigidity of the peptide
bond (i.e., a constant torsion angle w) and excluded
volume constraints. This probability density of this reference
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state for local interactions cannot be evaluated analytically.
In fact, the simpler problem in polymer physics of finding
the probability density of two atoms separated by a small
number of bonds (and ignoring excluded volume constraints)
lacks a closed form analytic solution.

Therefore, based on previous work that developed a
statistical coil model for the unfolded state of proteins, a
numerical technique is adopted to determine the reference
state probability distributions (Jha et al. 2005a). This
unfolded state model describes the conformation of a
given residue as depending only on the torsion angles of
its nearest neighbors and on excluded volume constraints.
Because this unfolded state model respects bond lengths,
bond angles, the rigidity of the peptide plane, and
excluded volume constraints while not including long
range interactions, the model is ideal for determining the
probability density for the local reference states. The
details of this model are reviewed in the Appendix. By
first generating an unfolded ensemble for ubiquitin (an
arbitrary choice) and then by averaging over amino acid
identity, the reference state probability distributions are
computed. This average over the amino acid identity
effectively removes the residue-dependent biases in the
Ramachandran map, although small biases may persist.

Figure 3 displays the reference state probability den-
sities obtained for two C, atoms in the following local
potentials: (A) DOPE-NI1, (B) DOPE-N2, (C) DOPE-N3,
and (D) DOPE-N4. The distribution function for each
reference state is contrasted against the spherical refer-
ence state obtained by choosing the maxima of the
distributions to be equal (Fig. 3) to better demonstrate
the dramatic differences necessitating the treatment of
local terms separately. Due to the constraints of local
backbone geometry, two atoms that are separated by a
small distance in primary sequence are not distributed
uniformly throughout a sphere, even when the two atoms
are noninteracting. The reference state for the nonlocal
portion of the statistical potential is the same as that used
in DOPE. We therefore arrive at the expression for the
DOPEyy energy score,

Ele-qumsz(m+l)

1\/(r,»j|1§Y§V )
— N z In
NonlocalPairs N (vajv)pggle (r,:]-) 47Tr2Ar
N (gl
—a; ) In :
iz \N (1) ity () 4mr2ar
pairs
N (f tj|If_V,N)
—a, Y In o
tein N (Iz:,j )p],}’g‘p (ryj)4mrAr

where k is the residue index and i,j are the atom indices.
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Figure 3. Reference states used in (A) DOPE-NI, (B) DOPE-N2, (C) DOPE-N3, and (D) DOPE-N4. Superimposed on these reference
states is the DOPE-like spherical reference state obtained by matching the maxima of the distributions. The inequivalence between
these distributions emphasizes the utility of the new local reference states introduced by DOPEy.

Results and Discussion

The statistical potentials introduced here are tested using
decoy sets. Various methods have been used to generate
these decoy sets of protein conformations, and we con-
sider the ability of these statistical potentials to recognize
the most native-like structure. Validated statistical poten-
tials are used in protein structure prediction (Bowie et al.
1991; Sun 1993; O’Donoghue and Nilges 1997; Chiu and
Goldstein 2000; Tobi and Elber 2000; Tobi et al. 2000;
Colubri et al. 2006), structure refinement (Topf et al.
2006), and protein—protein docking (Shen et al. 2005).
Our tests employ a wide range of decoy sets because the
performance of a statistical potential depends on both
the statistical potential and the decoy set. For example, if
all decoys have near ideal torsion angles but the native
structure is the only structure with reasonable tertiary
contacts, then scoring only with torsion potentials such as
TSP would perform very poorly, while at the opposite
extreme, if all decoys have very poor torsion angles, then
TSP would perform exceedingly well. However, although
we strive to avoid bias, the optimum coefficients depend
on the metric chosen. Hence, it is important to parameter-
ize potentials tailored for specific applications.

Performance of all-atom statistical potentials

In this section, we compare DOPE, DOPE-Back, DOPE-
NI-N = 2, and DOPE-NI-N2-N = 3. The all-atom
statistical potential DOPE outperforms all previously

developed statistical potentials in native structure recog-
nition (Shen and Sali 2006). DOPE-Back is a modifica-
tion of DOPE that treats atomic interactions differently
depending on their backbone Ramachandran conforma-
tions. DOPE-NI-N = 2 is an alternative modification that
consists of a sequence local contribution between nearest
neighbor residues in sequence and a DOPE-like sequence
nonlocal contribution for all other atom—atom pairwise
interactions. Lastly, DOPE-NI-N2-N = 3 contains two
local portions to describe sequence nearest neighbor and
next nearest neighbor interactions and a DOPE-like non-
local statistical potential.

As expected, the inclusion of the extra information into
DOPE dramatically alters the energy score assigned to
pair interactions. Figure 4 compares the energy score for
two arginine a-carbons from DOPEyy and DOPE-Back,
with those from DOPE as a function of interatomic
distance. Figure 4A demonstrates that the i,i + 1 energy
score is restricted to a very narrow range of separations
that are dictated by purely geometric constraints. Due to
the appropriately defined reference state, when the geo-
metric constraint is satisfied, the energy score vanishes.
Energy scores for the other local interaction contributions
are more complex. The DOPE and DOPE-NI-N = 2
energy curves in Figure 4B are perfectly superimposed
for distances in excess of 4 1&, but DOPE has an extra
minimum at the distance corresponding to the i,i + 1
interactions. This minimum in the DOPE curve is clearly
an artifact when applied to a pair of nonbonded atoms.
DOPE-NI-N = 2 corrects for this bias, and the new
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Figure 4. The DOPE, DOPEyy, and DOPE-Back statistical potentials all yield strikingly different interaction energies. (A) Local
interaction energies for DOPEyy, (B) nonlocal interaction energies for DOPEyy compared with DOPE, (C) interaction energies of
DOPE-Back compared with DOPE. All interactions are between two arginine a-carbons.

global minimum in the nonbonded portion is located be-
tween 5 and 6 A where DOPE only contains a local mini-
mum. Figure 4C displays energy scores obtained from
DOPE-Back. As expected, the helix—helix interaction
curve differs from the beta—beta interaction curve. The
beta—helix curve is devoid of stabilization since the inter-
action score is strictly positive. Figure 4C implies that
within the context of this statistical potential, the inter-
action of two arginine C, is stabilizing when both are either
in helices or in sheets but not when one is in each type of
structure.

Table 1 summarizes the performance of these statistical
potentials for all 306 protein decoy sets. The new
modifications described here improve DOPE in the
ability to properly identify native structures of proteins.
Whereas DOPE correctly identifies 126 of the native
structures from the 306 decoy sets, DOPE-Back, DOPE-
NI-N = 2, and DOPE-NI-N2-N = 3 correctly recognizes
146, 178, and 157 native structures, respectively. In terms
of the native structure recognition ranking, all three
modifications improve DOPE’s percentile ranking of

27.2%. DOPE-Back, DOPE-NI-N = 2, and DOPE-NI-
N2-N = 3 produce rankings of 13.8%, 18.7%, and 21.8%,
respectively. However, the quality of the predictions and
Z-scores depends on the modification in question. The
Z-score measures how many standard deviations occur
between the native structure’s energy score and the
average decoy’s energy. Compared with DOPE, DOPE-
NI-N = 2 improves the Z-score from 1.84 DOPE to 1.88
and the predicted root-mean-square deviation (RMSD)
from 2.74 to 2.67 10\; however, DOPE-Back and DOPE-
NI1-N2-N = 3 produce poorer Z-scores of 1.68 and 1.45,
respectively, and poorer RMSD predictions of 3.94 and
430 A. The poorer average prediction of DOPE-Back
reflects the fact that DOPE does not fare well for the
most native-like decoy sets where incorrect predictions
tend to contribute small numbers to the average, whereas
DOPE-Back performs poorly on highly nonnative decoys
where incorrect predictions contribute harshly to the
average.

The RMSD-energy score correlation coefficient from
DOPE is 0.36, while after modification, DOPE-Back,

Table 1. Performance of all-atom statistical potentials for all 306 decoy sets

Average native

Average prediction Correlation coefficient

Function Success rate® ranking (percentile) (RMSD) Z-score between RMSD and score
DOPE 126/306 27.2 2.74 1.84 0.36
DOPE-Back 146/306 13.8 3.94 1.68 0.15
DOPE-NI-N = 2 178/306 18.7 2.67 1.88 0.30
DOPE-NI-N2-N = 3 157/306 21.8 4.30 1.45 0.20

“Native has lowest energy.
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DOPE-NI-N = 2, and DOPE-NI-N2-N = 3 yield corre-
lations of 0.15, 0.30, and 0.20. Two things should be
noted about the correlation coefficient. First, although a
strong correlation is likely to be useful in applications,
there is no physical reason why the RMSD and energy
score should be correlated over a large range of RMSDs.
Second, none of these statistical potentials really presents
a ‘““good” correlation. Moreover, the energy coefficients
used in compiling Table 1 are chosen primarily to
optimize the success rate. Alternative optimizations of
Z-scores or correlation coefficient are included in the
Electronic supplemental material.

Performance of Cg energy functions

We now proceed to investigate the performance of the
statistical potentials in their reduced Cg representations
by comparing DOPE-Cgz, DOPE-Cg-Back, DOPE-Cg-N1-
N = 2, and DOPE-Cg-NI-N2-N = 3, which are obtained
from the corresponding all-atom statistical potentials by
omitting contributions from atoms in side groups other
than the Cg atoms. Table 2 describes the performance of
these Cg statistical potentials for the 306 decoy sets. As
with the all-atom statistical potentials, the modifications
described here improve DOPE-Cg in properly identifying
native structures of proteins. DOPE-Cg correctly assigns
100 of the native structures from the 306 protein decoys
sets, while DOPE-Cg-Back, DOPE-Cg-NI-N = 2, and
DOPE-Cg-NI-N2-N = 3 correctly identify 147, 133, and
140 native structures, respectively. Similarly, DOPE-Cg
produces an average ranking of 37.0%, while DOPE-Cg-
Back, DOPE-C3-N1-N = 2, and DOPE-Cg-NI-N2-N = 3
produce rankings of 15.3%, 26.8%, and 23.1%. The
average RMSD of the lowest energy structure is improved
by DOPE-Cg-Back but is worsened by DOPEyy-Cp. The
quality of the Z-scores also is improved by all modifica-
tions. DOPE-Cg has a Z-score of 0.89, whereas DOPE-
Cg-NI-N = 2, DOPE-Cg-NI-N2-N = 3, and DOPE-Cg-
Back produce Z-scores of 1.32, 1.45, and 1.84, respectively.

As with the all-atom potentials, the correlation coef-
ficient is worsened by the modifications. The correlation
coefficient of DOPE-Cpg is 0.36, and after modification,
DOPE-Cg-Back, DOPE-Cg-NI-N = 2, and DOPE-Cg-

NI-N2-N = 3 yield correlations of 0.20, 0.31, and 0.22.
Table 2 is compiled using coefficients chosen primarily to
optimize the success rate, while optimizations in terms
of Z-scores and correlation coefficients are included as
Supplemental material.

The first commendable point about these Cg reduced
potentials is that the success rate for all three of the
modified potentials exceeds that for the all-atom statis-
tical potential DOPE. Even more interesting is the ability
of DOPE-Cg-Back to reproduce the results of the all-atom
DOPE-Back. Figure 5 quantifies how effectively DOPE
and DOPE-Back reduce to their Cg representations by
plotting the probability distributions for the correlation
coefficients between the all-atom and reduced potentials
over all 306 decoy sets. The average correlation coef-
ficient (R value) between the energy scores of DOPE-
Back and DOPE-Cg-Back across the entire training set
is 0.85, with 43% of the decoy sets having a correlation
coefficient higher than 0.90. The correlation coefficient
between DOPE and DOPE-Cg is 0.82, with 19% of the
protein decoys having a correlation above 0.90. The
origin of the dramatic difference in ‘‘percentage above
0.9 with only a small difference in the average correla-
tion is apparent from Figure 5. The DOPE-Back distri-
bution peaks strongly at high correlations, yet exhibits a
few very poor correlations that bring the average signifi-
cantly down. The DOPE distribution has a lower max-
imum but is not as disperse.

Figure 5 also exhibits the DOPE-Cg-Back energy score
against the DOPE-Back energy score for several decoy
sets, and remarkably, the correlation coefficient between
these energy functions in the optimal case is 0.993.
However, despite this optimal performance, this situation
represents the maximum of the probability distribution,
and 19% of decoy sets display correlation coeffici-
ents above 0.97. As suggested in the Materials and
Methods section, it appears that in many cases, once the
Ramachandran conformation and amino acid identity of a
residue are specified, essentially all of the side-chain
information is effectively incorporated for these decoys
that have good side-chain packing. Undoubtedly, the all-
atom potentials would outperform their Cg counterparts,
for decoy sets with poor packing.

Table 2. Performance of reduced B-carbon statistical potentials for all 306 decoy sets

Average native

Average prediction Correlation coefficient

Function Success rate® ranking (percentile) (RMSD) Z-score between RMSD and score
DOPE-Cg 100/306 37.0 3.59 0.89 0.36
DOPE-Cg-Back 147/306 15.3 3.45 1.84 0.20
DOPE-Cg-NI-N = 2 133/306 26.8 3.72 1.32 0.31
DOPE-Cg-NI1-N2-N = 3 140/306 23.1 4.21 1.45 0.22

“Native has lowest energy.
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Figure 5. Probability distributions of the correlation coefficient between DOPE and DOPE-Cg vs. DOPE-Back and DOPE-Cg-Back
over all 306 decoy sets. To illustrate the geometric meaning of particular correlation coefficients, correlations between all-atom and
reduced B-carbon DOPE-Back statistical potentials are taken from the Baker decoy set for the proteins lubx, lail, and 1bq9.

Performance of hybrid energy functions

We next consider the combination of these new statistical
potentials with other energy functions that include effects
that are not explicitly contained in the DOPE-like
statistical potentials. The three effects considered are
hydrogen bonding, backbone conformational preferences,
and solvation energies. As discussed in the Materials and
Methods section, hydrogen bonding is modeled using
Kortemme, Morozov, and Baker’s orientation-depend-
ent—hydrogen-bonding energy function (KMBhbond).
Torsional conformational preferences are described using
the Torsion Statistical Potential (TSP) developed by Jha
et al. (2005b). Finally, two possible energy functions are
used to describe solvation energies. The Ooi-Scheraga
solvent accessible surface area (SASA) potential (Ooi
et al. 1987) is used in conjunction with all-atom statistical
potentials, while a very simple Environmental Statistical
Potential (ESP) is considered for use with Cg representations.

Table 3 compares the reduced Cg-representation sta-
tistical potentials obtained by combining one of our new
statistical potentials with the three other energy functions. In
all cases, the hybrid energy functions perform better than
their nonhybrid counterparts. This behavior is expected
because relevant additional information is included in these
hybrid energy functions, and the optimization process
ensures that the new hybrid energy functions cannot do
worse than the original statistical potentials. The DOPE-Cg,
DOPE-Cg-Back, DOPE-Czg—NI-N = 2, and DOPE-
Cg—NI-N2-N = 3 hybrid statistical potentials exhibit
success rates of 172, 184, 170, and 179; average native
rankings of 22.2%, 18.1%, 23.1%, and 21.4%; average
RMSD predictions of 3.46, 2.98, 3.28, and 3.23; Z-scores of
2.65, 2.48, 2.20, and 2.41; and correlation coefficients of
0.22, 0.20, 0.27, and 0.22, respectively.

Table 4 compares the all-atom statistical potentials
obtained by combining one of our new statistical potentials
with the three other all-atom energy functions. Again, all

Table 3. Performance of reduced B-carbon hybrid statistical potentials for all 306 decoy sets

Average native Average prediction Correlation coefficient

Potential Success rate® ranking (percentile) (RMSD) Z-score between RMSD and score
DOPE-Cy-TSP-KMB-ESP 172/306 222 3.46 2.65 0.22
DOPE-Cg-BACK-TSP-KMB-ESP 184/306 18.1 2.98 2.48 0.20
DOPE-Cg-NI-N = 2-TSP-KMB-ESP 170/306 23.1 3.28 2.20 0.27
DOPE-Cyg-N1-N2-N = 3-TSP-KMB-ESP 179/306 21.4 3.23 241 0.22

“Native has lowest energy.
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Table 4. Performance of all-atom hybrid statistical potentials on all 306 decoy sets

Average native

Average prediction Correlation coefficient

Potential Success rate® ranking (percentile) (RMSD) Z-score between RMSD and score
DOPE-TSP-KMB-SASA 192/306 15.2 2.48 2.88 0.37
DOPE-BACK-TSP-KMB-SASA 198/306 11.7 2.14 2.42 0.31
DOPE-NI-N = 2-TSP-KMB-SASA 202/306 13.8 2.03 2.98 0.39
DOPE-NI-N2-N = 3-TSP-KMB-SASA 209/306 15.0 2.02 2.71 0.35

“Native has lowest energy.

the hybrid statistical potentials are superior to their non-
hybrid counterparts. The DOPE, DOPE-Back, DOPE-NI-
N = 2, and DOPE-NI-N2-N = 3 hybrid statistical
potentials exhibit success rates of 192, 198, 202, and 209;
average native rankings of 15.2%, 11.7%, 13.8%, and
15.0%; average RMSD predictions of 2.48, 2.14, 2.03,
and 2.02; Z-scores of 2.88, 2.42, 298, and 2.71; and
correlation coefficients of 0.37, 0.31, 0.39, and 0.35.

The exclusion of NMR structures in the assessment of
the statistical potential further highlights the success of
these hybrid statistical potentials. If NMR structures are
not included in the test, the best, reduced statistical
potential correctly identifies 178 of the 249 native
structures, and the best all-atom statistical potential
recognizes 195 of the 249 native structures. Electronic
supplemental material presents a more detailed compar-
ison of how the statistical potentials perform for subsets
of the 306 decoy sets.

The reduced hybrid energy functions can be used for
protein folding simulations with the clOOPS protein
folding software. However, a second optimization of
coefficients almost certainly is necessary because poten-
tials that are optimized for identifying native structures
may not be the best for guiding folding starting from the
unfolded state. The all-atom hybrid energy functions
cannot be used for Cg level folding simulations but can be
applied in the final step after the side groups are introduced.

Conclusions and further work

We have produced three new statistical potentials that
perform better than one of the best statistical potentials
available, DOPE, demonstrating superb ability to dis-
criminate between native structures and nonnative struc-
tures. Furthermore, once these statistical potentials are
combined with energy functions designed to describe
hydrogen bonding, torsion energies, and solvation ener-
gies, the resultant hybrid energy functions perform
extraordinarily well in their recognition of native struc-
tures in decoy sets.

Of particular interest is our development of reduced
Cp-representation statistical potentials. These statistical
potentials perform much better than the other reduced
statistical potential in correctly identifying native struc-

tures from decoy sets, and even perform better than the
all-atom DOPE statistical potential. Strikingly, the back-
bone-dependent statistical potential is able to retain
nearly all of the information obtained from the all-atom
potential in its Cg-representation. The ability of Cg
statistical potentials to perform at the level of high-
quality all-atom statistical potentials will facilitate sig-
nificant simplifications in computational protein science.
These statistical potentials are currently being optimized
for applications to protein structure prediction and refine-
ment. The all-atom statistical potentials developed here
are also in the process of being optimized for use as a
screening tool in these applications.

Materials and Methods

Generation of statistical potentials

All three statistical potentials described in the Theory section
(DOPE, DOPE-Back, and DOPEyy) are derived using statistics
from protein crystal structures deposited in the Protein Data
Bank (PDB) (Kouranov et al. 2006). Because certain protein
families are overrepresented in the PDB due to specific bio-
logical interest, a subset is chosen from the PDB consisting of
1441 crystal structures with <25% sequence homology, reso-
lution below 2.2 A, and R-factors <0.3. These 1441 structures
are used to compute a series of pair distributions for all types of
pairs of heavy atoms in the protein. In addition to the residue
and atom type specification of DOPE, DOPEyy treats atom
pairs differently depending on their separation in primary
sequence, while DOPE-Back distinguishes atom pairs with
regard to the RB occupied by the given amino acid.

The number densities obtained from the PDB are normalized
with respect to the noninteracting reference states developed in
the Theory and Appendix sections. DOPE, DOPE-Back, and the
nonlocal term of DOPEyy are constructed assuming that the
atoms in the noninteracting system are uniformly distributed
throughout a sphere. Statistics are compiled by grouping
empirical distances into 30 bins each having a width of 0.5 A.
The lower bound for these distances is 0 A and the upper bound
is 15 A. Because a cutoff distance of 15 A is used, an additive
constant is included that ensures that the energy score vanishes
at the cutoff distance.

DOPEyy uses separate local interaction energy scores to
describe residues separated by small distances in primary
sequence. Unlike the DOPE reference state, which assumes a
random distribution inside a sphere, the reference states for
these local interactions respect the geometric constraints
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induced by the polymer nature of the chain at short distances.
The unbiased probability distributions for the reference state
DOPEyy are determined by compiling the statistics from an
unfolded ensemble of 16,000 ubiquitin structures that are
generated with a statistical coil model of the unfolded state
(Jha et al. 2005a). An average over all residues in ubiquitin is
performed to remove any residue dependence. Because the
reference state for the local contributions to DOPEyy is
averaged over amino acid identity, the local interaction energy
scores in DOPEyy inherently correspond to those of a reduced
representation and can be used with only the 3-carbons of the
side chains. Figure 3 contrasts these reference state probability
densities for the sequence local interaction energy scores with
the uniform density approximation of DOPE. The reference
state distribution for DOPE-N1 is rather narrow, consistent with
stringent nearest neighbor geometric constraints. As expected,
the reference distributions broaden with increased sequence
separation. Statistics are compiled by grouping empirical dis-
tances into 30 bins, but the width of the bins, the lower bound
for these distances, and the upper bound for these distances vary
with the local term because of their differing spatial ranges. The
N1 term calculates distances in the range [0. 7 A 8.8 A] the N2
term calculates distances in the range [1.3 A, 12.1 A] the N3
term lies in the range [1.6 A 15 7 A] and the N4 term has
distances in the range [2.5 A 19 A]

Other energy functions

The Results and Discussion section also discusses statistical
potentials that are devised by combining the statistical potentials
developed here with earlier energy functions that focus on specific
physical properties. We also introduce a very simple ESP that
is tailored for application within the reduced Cg representation.
The three additional energy functions describe hydrogen bonding
(KMBhbond) (Kortemme et al. 2003), torsion energies (TSP) (Jha
et al. 2005b), and energies associated with the SASA (Ooi et al.
1987).

KMBhbond is a statistical potential for hydrogen bonding that
depends on the distance between the geometric centers of the N-
H bond vector, the C=0 bond vector, the bond angle between
the N-H bond vector and the hydrogen bond, the bond angle
between the C=0 bond vector and the hydrogen bond, and the
dihedral angle about the acceptor-acceptor base bond. The three
angles describe the relative orientation of the bond vectors in the
hydrogen bond. We use a modified form in which the contribu-
tion associated with rotation about the torsion angle is omitted
because our tests indicate that this modification improves the
performance with decoys sets.

The TSP has been developed (Jha et al. 2005b) using high-
resolution crystal structures contained in the PDB. The energy score
assigned to the backbone Ramachandran conformation of a residue
depends on the chemical identity of the residue as well as the
chemical identity of the neighboring residues. The noninteracting
reference system is defined as the state in which the backbone tor-
sional angles are uniformly distributed. The energy score associated
with the backbone torsion angles of residue i is thus given by

E™F = =% In(P(®;, Widentity; -, ).

The Ooi-Scheraga solvent-accessible surface area (SASA)
potential is of the form

N
Esasa = Y, 801,
i-1

2134 Protein Science, vol. 16

where o; is the accessible surface area of a hypersurface
bisecting the first solvent shell surrounding protein atom i and
g:; 1s an empirical (free energy) parameter dependent on atom
type. Because the side chain is important in defining the
exposed surface area, this energy function is only applied within
an all-atom representation. As an alternate for use with reduced
Cp representations, we employ a simpler ESP that assigns each
residue with an environmental energy score that is a function of
the size of the protein and the number of a-carbons contained
within an 8.5 A sphere centered on the residue’s a-carbon
(Fernandez et al. 2002). Explicitly, this energy score is of the
form

EESP _ 1 (p(N|RG,AAidentityi))
’ p(NIRG) ’

where N is the number of a-carbons in an 8.5 A sphere centered
on the residue’s a-carbon (ignoring the two sequential nearest
neighbors), RG is the radius of gyration of the protein,
AAidentity is the amino acid identity of the residue, p(N|RG)
defines the reference state as the number of a-carbons in an 8.5
A sphere independent amino acid identity, and the total energy
score is the sum over all residues i in the protein.

Decoy sets

The various energy functions are tested using a series of decoy
sets, each of which is a collection of protein structures consist-
ing of the native structure and many alternate structures for a
given amino acid sequence. We consider a total of 306 protein
decoys sets from a variety of sources to minimize biases
associated with various collections of decoy sets. These biases
arise because the performance of a statistical potential for a
given decoy set is determined not only by the statistical
potential but also by the decoy set. The ‘““Zhou” decoy set
includes 96 standard decoy sets with known X-ray crystal
structures (Zhang et al. 2004). The ‘“‘Baker” decoy set is
generated with the Rosetta algorithm (Simons et al. 1997) and
includes over 75,000 members for 41 proteins whose structures
have been determined with either X-ray crystallography or
NMR. Finally we test all decoys that Zhou has removed from
the original collections of decoy sets (Zhang et al. 2004)
because these decoys consist of NMR structures or of sets of
hemoglobin and immunoglobulin threading decoys. These
decoy sets are termed ““NMR” and ““Threading,” respectively.

Five metrics are employed to evaluate the performance of our
statistical potentials on the decoy sets. The first metric is simply
the success rate of identifying the native conformation as the
lowest energy structure. The second metric is the average
percentile ranking of the native structure in the decoy set (the
average fraction of structures with energies lower than that of
the native). The third metric is the average RMSD of the lowest
energy structure. The fourth metric, called the Z-score, is a
statistical measure that quantifies the number of standard
deviations o between the native energy Ey,, and the mean p
of the energy distribution,

»— ENat
70_ .

Z — Score =

The Z-score is defined with the opposite sign than conven-
tional, so that a large positive Z-score is considered ideal. The
final metric is the correlation coefficient between the RMSD of
the structure from the native and the energy score of the decoys.



Optimized reduced Cg statistical potentials

In general, the correlation coefficient between two variables, x

and y, is given by
Nzxiyi - (in) (Z)’f)

P @) G

where N is the number of data points in the sum. The correlation
coefficient takes values in the range [—1,1], with —1 being
perfect anti-correlation and 1 being perfect correlation. A high
correlation coefficient may be an advantageous metric for
folding or for refining structures since a high correlation
suggests that a decreased energy score is likely to produce a
reduction in the RMSD. However, it is not physically clear that
a high correlation should exist between RMSD and energy score
over the large range of RMSD found in decoy sets.

o(x,y) =

Optimizing coefficients

All the statistical potentials considered here are comprised of a
linear sum of up to four simpler contributions with adjustable
weights. The coefficients in each sum are found through
optimization on the decoy sets. The quality of each set of
coefficients is gauged by independently optimizing the success
rate, the Z-score, and the correlation coefficient. To empirically
determine which set of coefficients produces the most balanced
statistical potential, these three sets are compared when consid-
ering all three metrics simultaneously. Our primary emphasis is
placed on optimizing the success rate, but alternates based on
stressing other metrics are included in the Electronic supple-
mental material.

The optimization process proceeds in a two-step manner.
First, a simulated annealing algorithm is performed in coef-
ficient space. The output of the annealing routine is then further
optimized with L-BFGS-B constrained quasi-Newton optimiza-
tion (Byrd et al. 1995; Zhu et al. 1997). This second step is not
performed for the success rate optimization because the success
rate is a discrete function to which derivative based techniques
are inapplicable.

Implementation

All of the statistical potentials discussed in this paper are
implemented in the protein folding simulation package clOOPS
(Colubri et al. 2006). The software is open source (http://
protlib.uchicago.edu). The source code is written in C++. Only
a reduced Cg-energy function may be used for simulation in
clOOPS, but the all-atom statistical potentials may be used for
analyzing the output of these trajectories. A much more detailed
discussion of this software and its performance are discussed
elsewhere (Colubri et al. 2006).
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Appendix

Basic theory of statistical potentials

Here, we develop the statistical mechanical approach to
statistical potentials and carefully note where approxima-
tions are necessary. The n-body correlation function is
defined by

where p(7,...,7) is the probability density that the n
atoms have positions {7} and p(7;) is the probability
density that the jth atom has position 7;. If the atoms were
noninteracting, the n-body probability density would
separate into a product of single body terms, and the
function g™ would equal unity for all positions {7;}.
Thus, as its name suggests, the n-body correlation
function measures the extent of correlation between the
n atoms.

The potential of mean force w'™ is defined in terms of
the n-body correlation function through

o F)= — kBTln(g<">(71, fn)).

If an isolated system consists of N atoms (which in-
cludes both solvent and protein atoms), then the gradient
of the potential of mean force,—ij(”)(f'l, ..y ), TEpIE-
sents the average force on atom j when the positions
of atoms n + [,...,N have been averaged over all
microstates consistent with the ensemble. Therefore,
w(Fy, ..., Fy) = U(F, ..., Fy), where U is the potential
energy of the system, but in general, when n < N,
WO (Fy, oy 7o) # U(FL ooy ).

The ground state of the protein with n atoms by
definition maximizes the probability density function,
p(71, ..., 7). Using the definition of the potential of mean
force,

n
P(Fry ey Fy) = (Hp(;'j)> e*Bw(")(f’l,...,ﬁl),
j=1

and ignoring constant factors that are independent of
protein structure, the ground state of a given protein
corresponds to the minimum of w) (7, ..., 7,).

In principle, w") (7, ..., 7,) could be calculated directly
from the probability densities evaluated from a library of
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protein structures. This procedure is well defined pro-
vided that all protein structures used are obtained under
the same conditions. Hence, most statistical potentials
restrict consideration to crystallized protein structures.
Because of the restriction to crystal structures, the
resultant statistical potentials may have limitations in
evaluating protein structures found by other experimental
techniques.

In practice, using w(”)(F], ...,Ty) as a scoring function is
impossible. There is insufficient data to determine the full
n-body joint distribution function. Computational trac-
tability and data sparseness generally dictate invoking the
assumption that the potential of mean force is pairwise
additive. The errors associated with this approximation
can be reduced in two manners. First, additional infor-
mation can be appended in an attempt to restore a portion
of the information lost by ignoring many-body interac-
tions. Techniques for introducing the added information
include allowing the statistical potential to treat atoms
differently depending on their context in the sequence
(e.g., a-carbons are distinguished from B-carbons or,
e.g., B-carbonsajanine are distinct from (-carbonSyyjine)
or environment (buried versus exposed). Some effort has
been devoted to determining the optimal number of
distinct atom types for use when building an all-atom
statistical potential (Solis and Rackovsky 2000, 2006;
Kuznetsov and Rackovsky 2002; Mintseris and Weng 2004).

Second, it is crucial to introduce a reference state to
define the free energy of the noninteracting system, a
feature necessitated by the neglect of many-body corre-
lations. After introducing these improvements, the poten-
tial of mean force takes the form

W<n>(71, vy }'_';1) ~ _kBTZ (W(2) (rij|1ij) — WEQZLJF(FIJUU))’
ij

where the sum is over all atom pairs, w® depends only on
the interparticle distances r;;, and where the notation /;
designates the added information that is discussed more
fully later.

By definition w'® depends only on the pair distribution
function and upon constant terms that are ignored since
they produce an additive constant that is unimportant for
ranking protein structures. The potential of mean force is
represented as

N{(rij|l
W(n)(}_"l, ,}_"n) ~ kBTZh]((rJ'j))’

7 \Nrer (rilly)

where N(r;|l;) is the number of observations in the
database and Nggp(riil;) is the number of observations
that are expected in the completely noninteracting refer-

ence system that defines the zero of free energy. It is
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sometimes desirable to use reduced representations in
which certain protein atoms are excluded in the energy
calculation. This approximation therefore loses some
information concerning the omitted atoms and thus can
also be improved by introducing additional information
and carefully choosing reference states that may depend
both on the interparticle distance and on the additional
information.

The foregoing approximations require three choices in
order to construct a statistical potential. The first choice
concerns the level of representation to be used; the second
is associated with the type of added information; and the
third concerns the reference state used to define the zero
of free energy. These choices largely determine the
success of the statistical potential. Statistical potentials
could also be designed to include many-body interactions
or to reproduce particular experimental data, but these
approaches are not pursued further here.

Reference state probability distribution used in DOPE,
DOPE-Back, and nonlocal components of DOPExN

The reference state considered by DOPE is reviewed
because this reference state forms the basis for those used
in several of the statistical potentials developed here
(Shen and Sali 2006). DOPE defines the reference state
as one in which the particles are distributed uniformly
throughout a sphere whose radius, a, is related to the
radius of gyration R of the protein by @ = 1/5/3R¢. This
simple, yet reasonable model permits the analytical
determination of the reference state probability distribu-
tion. The treatment of the problem presented here mirrors
that of Shen and Sali (2006) and is reproduced here to
motivate our choices regarding reference states. The
equivalent problem has also been addressed elsewhere
(Deltheli 1919; Hammersley 1950; Lord 1954; Smith
1977; Tu and Fischbach 2002; Garcia-Pelayo 2005).

Let the first particle be located at the position sz, where
hZ is a unit vector along the Z-axis. The probability that
the second particle is located at a distance between r and
r + dr is proportional to the volume of the infinitesimal
shell of inner radius r and thickness dr centered at hZ that
is contained within the reference sphere of radius a. Since
this probability depends on #, this is called the partial
probability function, and the reference state probability
distribution is found by integrating over all possible
values of h. If r < a — h, then the shell of radius r
centered at hZ is completely contained within the refer-
ence sphere of radius a. The partial probability function
in this case is simply given by

p(ria,h) - Amr’dr = 4mr’dr,r<a — h.

When a — h < r < a + h, the shell of radius r centered at hz
intersects the reference sphere, and only the portion of the
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shell is contained within the reference sphere and con-
tributes to the partial probability function. In this sit-
uation, the partial probability function is given by

p(ria,h) Aaridr = 7Tr(r—|—a—h)(1 —|——a;r)dr7
a—h<r<a+h.

The final case arises when r > a + h, whereupon the entire
shell of radius r is located outside of the reference sphere,
giving

p(r;a,h) - 4mr’dr = 0,r > a.

The reference state probability distribution p”“"% (r, a) is

obtained by integrating the partial probability function
over all possible values of h,

a

pPOPE(r;a) = /P(r;a,h)hzdh-
0

Because the reference state probability distribution is
designed to determine the probability distribution in the
absence of all interactions, pD OPE (r; @) is unit normalized.
Suppose that a nonbonded cutoff ¢ is used when compiling
statistics from crystal structures. Since all computed dis-
tances lie in the range between zero and c, the normalization
of the reference state must also be over this range,
c

/pDOPE(r; a) - 4mridr = 1.
0

If ¢ > 2a, then because the reference state probability
distribution vanishes when 2a < r < ¢, we may rewrite this
in the more convenient form

2a
/pDOPE(r; a) - 4mridr = 1.
0

Upon performing the necessary integrals, we compute the
probability of finding two atoms separated by a distance
in the range of r and r + dr in the reference state as,

pPOPE(r;a) - dmrrtdr =
3r2(r — 2a)2(r + 4a)
16a°
6r2(r — Za)z(r + 4a)
c3(c3 — 18a%c + 3243)

dr,c > 2a

dr,c < 2a

Figure 1 displays the probability distribution for two
particles to be located between a distance of r and r + dr
for ¢ > 2a and a = 24 as a function of r.

The training set used to determine DOPE spans a wide
range of protein sizes. The total probability density used

for the reference state is then computed as a weighted
average over the various sized proteins in the training set,

PREFE) = AP )

a
Reference states for local interaction terms of DOPEnN

Due to local geometric constraints, the assumption of a
random distribution within a sphere poorly describes the
reference state for interactions between residues close in
primary sequence. In previous work, we have developed a
statistical coil model that reproduces both the random-coil
scaling of the radius of gyration and the residual dipolar
couplings experimentally observed in partially aligned
chemically denatured unfolded states. Because this unfolded
ensemble retains the polymeric nature of the protein back-
bone and satisfies excluded volume constraints, this model is
used to determine the reference state probability distribu-
tions for the local terms of DOPEyy.

We model the unfolded state as an ensemble of
structures, consistent with excluded volume constraints
and the intrinsic backbone preferences of the protein.
Previous work has shown that these preferences depend
on the amino acid identity as well as on the identity and
backbone conformations of the flanking residues (Jha
et al. 2005b). We encode this information in our unfolded
ensemble through an energy function that depends on the
identity and conformation of the nearest neighbors.
Ideally, this energy function would depend on the identity
and conformation of both neighbors simultaneously, but
due to statistical limitations, the energy function is
constructed using dimer statistics for each neighbor
separately.

The simplest Ramachandran energy depends only on
single residues and has the form

U((l,’, b,) = —kT ln(p(a,-, bi)),

where a; is the amino acid identity and b; is the
Ramachandran bin occupied by the residue. As men-
tioned above, neighbor effects contribute a coupling term
to this energy.

8U(a,‘,b,‘,aj,bj) = U(ai,bi,aj,bj) — U(a,‘,b,‘) — U(Clj,bj)

pl(ai, bi,a;, b))
8U(a;, bi,a;, b;) = —kT'In| ————2" 1))
( i-) (p(aiabi)p(ajabj)

Here, we assume that the backbone conformations of only
the nearest neighbors are coupled in the unfolded state.
The energy of the protein conformation is then

N N—1
Ulay, by, ...;ay,by) =) Ula;, b))+ Y, 8U(a;, bi, air1, bisy ).
i=1 =1

I
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An unfolded ensemble is generated through a Monte
Carlo simulation using this energy function. The move set
for this simulation is trimer insertion from a restricted
coil library of residues outside of, and not adjacent to,
regular secondary structure (helix, sheet, and hydrogen
bonded turn). This initial ensemble is then “‘nudged” in
order to relieve steric clashes. ““Nudging” consists of
varying torsion angles within a window while minimizing
an excluded volume potential consisting of a hard sphere
interaction between backbone heavy atoms and side-
chain B-carbons and a soft sphere potential between the
side-chain centers of mass (with soft-sphere radius, such
that 90% of the accessible side-chain volume is contained
within the sphere). After this minimization protocol, side
chains are inserted using SCWRL (Canutescu et al. 2003),
and hydrogen atoms are inserted using REDUCE (Word
et al. 1999).

In previous work, this unfolded ensemble is shown to
reproduce both local and global aspects of the chemically
denatured state for several experimentally studied sys-
tems (Jha et al. 2005a). In particular, this model predicts
random-coil scaling of the radius of gyration and accu-
rately recapitulates experimental residual dipolar cou-
pling data. A Web server has been created that allows
users to calculate unfolded ensembles for arbitrary pro-
tein sequences (http://unfolded.uchicago.edu).
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