

SIGGRAPH Asia 2010, Seoul
Saturday, December 18th (Room E5)

PART I: Introduction to Processing for Android
 (14:15 -16:00, Jihyun Kim)
PART II: Fast 3D Graphics in Processing for Android
 (16:15 - 18:00, Andres Colubri)

The key topics of this course consist in getting
started with Processing development on
Android devices, introducing the main
characteristics of Processing, running
simple graphic applications and
uploading them to Android devices, and
grasping the possibilities offered by more
advanced features such as OpenGL-
accelerated 3D graphics. A central objective
is to provide enough basic material and
motivation to the attendees of this course so they
can proceed with further explorations of the
Android platform and Processing language.

PART I:
Introduction to Processing for
Android

PART II:
Fast 3D Graphics in Processing for
Android

1. What is Android?
2. What is Processing?
3. Basic concepts in Android applications
4. First steps with Processing for Android
5. Basic Processing use
6. Extending Processing

7. OpenGL and Processing
8. Geometrical transformations
9. Camera and perspective
10. Creating 3D objects
11. 3D text
12. Some special topics
13. Models: the PShape3D class

CONTENTS

PART I:
Introduction to
Processing for
Android

Android is an open source operating system designed primarily for mobile
devices, based on Linux with a Java programming interface. It provides
tools, e.g. a compiler, debugger and a device emulator as well as its own
Java Virtual machine (Dalvik Virtual Machine - DVM). Android is mantained
by the Open Handset Alliance, which is lead by Google.

More: http://www.tbray.org/ongoing/When/201x/2010/11/14/What-Android-Is

1. What is Android?

http://www.youtube.com/watch?v=ptjedOZEXPM
Google I/O 2008 - Dalvik Virtual Machine Internals

Android uses a special Java virtual machine (Dalvik) which is based
on the Apache Harmony Java implementation. Dalvik uses special bytecode.
Therefore you cannot run standard Java bytecode on Android. Android
provides a tool "dx" which allows to convert Java Class files into "dex" (Dalvik
Executable) files. Android applications are then packed into an .apk (Android
Package) file.

 Java language compiles to
 -> Dalvik byte-code which runs
on
 -> Dalvik virtual machine
 -> Inside the Android OS
(Linux-based)

1. Application framework: enabling reuse and replacement of
components

2. Dalvik virtual machine: optimized for mobile devices
3. Integrated browser: based on the open source WebKit engine
4. Optimized graphics: powered by a custom 2D graphics library; 3D

graphics based on the OpenGL ES 1.0 specification (hardware acceleration
optional)

5. SQLite for structured data storage
6. Media support for common audio, video, and still image formats (MPEG4,

H.264, MP3, AAC, AMR, JPG, PNG, GIF)
7. GSM Telephony (hardware dependent)
8. Bluetooth, EDGE, 3G, and WiFi (hardware dependent)
9. Camera, GPS, compass, and accelerometer (hardware

dependent)
10.Rich development environment including a device emulator, tools

for debugging, memory and performance profiling, and a plugin for the Eclipse
IDE

http://developer.android.com/guide/basics/what-is-android.html

Features

1.1 Android devices

The Open Handset Alliance publishes a series of hardware
specifications that all the devices for Android must comply with. For
Android 2.1, these are:

1. DISPLAY: Minimum QVGA (240x320) with portrait and landscape
orientation

2. KEYBOARD: Must support soft keyboard
3. TOUCHSCREEN: Must have (not necessarily multitouch)
4. USB: USB-A port required for communication with host.
5. NAVIAGTION KEYS: Home, menu and back required
6. WIFI: Required,implementing one protocol that supports at least

200Kbit/sec
7. CAMERA: Required, at least one rear-facing with 2MP
8. ACCELEROMETER: 3-axis accelerometer required
9. COMPASS: 3-axis compass required
10.GPS: must include GPS receiver
11.TELEPHONY: Android 2.2 MAY be used on devices that do not include

telephony hardware.
12.MEMORY AND STORAGE: At least 92Mb memory for kernel, 150Mb

for non-volatile storage for user data
13.APPLICATION SHARED STORAGE: Must provide at least

2GB.
For more details, check the Android Compatibility Program:
http://source.android.com/compatibility/overview.html

1.1 Android devices

Many hardware manufacturers are producing Android
handsets: HTC, Samsung, Motorola, LG, Sony
Ericsson... For a comprehensive list, check this website:
http://www.androphones.com/all-android-phones.php

1. writing code on host computer
2. using text editor/command line or

Eclipse (with ADT)
(and now Processing).

3. Testing/debugging on Emulator
4. Upload to device
5. ADB allows to debug on device

1.2 Development process and Android Market

Android Software Stack

Basic Idea:

Android Development Flow
http://stuffthathappens.com/blog/2008/11/05/android-
development-flow/

1.2 Development process and Android Market

Android Market is an online software store
developed by Google for Android devices. An
application called "Market" is preinstalled on most
Android devices and allows users to browse and
download apps published by third-party developers,
hosted on Android Market.

http://www.android.com/market/

1.2 Development process and Android Market

1.2 Development process and Android Market

1.3 Hardware

Android devices have a common basic set of
hardware features such as multitouch screen...

Various sensors such as camera, accelerometer, GPS, magnetometer
(compass), etc.

Android can be used on tablets as well.
This format extends its applications to new
areas of use and interaction.

http://www.hardkernel.com/productsodroidt.php

Processing is an open source programming language and
environment for people who want to create images, animations, and
interactions. Initially developed to serve as a software sketchbook and
to teach fundamentals of computer programming within a
visual context, Processing also has evolved into a tool for
generating finished professional work. Today, tens of thousands of
students, artists, designers, researchers, and hobbyists who use
Processing for learning, prototyping, and production.

2. What is Processing?

From a more technical perspective, Processing is two things:

1. A minimal Development Environment (Called PDE), that
favors ease of use over functionality

2. A programming language, and as such is basically a dialect
built on top of Java to make graphics programming less
cumbersome thanks to a simple API.

Processing was originally
created with the purpose of making
programming of graphics and
interaction more accessible
for people without technical
background.

2.1. Main goals of Processing

Simplicity

 Flexibility

2.1. Main goals of Processing

Many types of information can
flow in and out of Processing.

Casey Reas and Ben Fry.
<Getting Started with Processing>.
O’Really Media, 2010

2.1. Main goals of Processing

Family
Tree

P rocessing has a large family of related
languages and programming environments

Casey Reas and Ben Fry.
<Getting Started with Processing>.
O’Really Media, 2010

2.2 Use in education and
 Artistic/Design Production

Processing started as a
project at the MIT Media
Lab, and its direct
ancestor was another
language called Design
By Numbers (DBN).

The goal of DBN was to
teach programming to art
and design students.
This was also one of the
first applications of
Processing (and still is).

2.2 Use in education and
 Artistic/Design Production

sketches from classes on OpenProcessing.
http://openprocessing.org/collections/

Processing is also widely
used in prototyping and
final production of
applications in many
different areas: interactivity,
generative graphics,
physical computing, and
data visualization

works based on Processing at this website:
http://processing.org/exhibition/

2.2 Use in education and
 Artistic/Design Production

Interactivity

2.2 Use in education and
 Artistic/Design Production

<Oasis>, 2008: Yunsil Heo, Hyunwoo Bang
http://everyware.kr/portfolio/contents/09_oasis/

<Shadow Monsters>, 2005, Philip Worthington
http://worthersoriginal.com/

<In the Air>, 2008, Victor Viña, Nerea Calvillo
http://www.intheair.es/

Data
Visualization

2.2 Use in education and
 Artistic/Design Production

<FLUflux>, 2009, Andres Colubri, Jihyun Kim
http://threeecologies.com/fluflux/

<Light Roller>, 2006, Random
International
http://www.random-international.com/

Physical
Computing

2.2 Use in education and
 Artistic/Design Production

<Openings>, 2008, Andrea Boeck, Jihyun
Kim, and Justin Liu
http://we-make-money-not-art.com/

<Vattnfall Media Façade> Art+Com
http://www.artcom.de/

2.2 Use in education and
 Artistic/Design Production

< Latent State >, 2009, Andres Colubri_
live cinema performance

Real-time
graphics
and video

<Process 6> Casey Reas
http://reas.com/category.php?section=works

2.2.5 Generative art

2.2 Use in education and
 Artistic/Design Production

<Magnetic Ink, pt. 3> Robert Hodgin
http://www.flight404.com/blog/?p=103

Processing allows more than 100 external libraries contributed by the
community.

2.3 Overview of Processing Libraries

An Android application consists out of the following parts:

1. Activity - A screen in the Android application
2. Services - Background activities without UI
3. Content Provider - provides data to applications, Android
contains a SQL-Lite DB which can serve as data provider
4. Broadcast Receiver - receives system messages, can be used
to react to changed conditions in the system
5. Intents - allow the application to request and/or provide services .
For example the application call ask via an intent for a contact
application. Application register itself via an IntentFilter. Intends are a
powerful concept as they allow to create loosely coupled applications.

https://sites.google.com/site/androidappcourse/

3. Basic Concepts in Android applications

http://developer.android.com/resources/tutorials/views/index.html

3.1 Views, Activities, Intents, and the manifest file

Views

The visual content of the window is provided by a
hierarchy of views — objects derived from the
base View class. Each view controls a particular
rectangular space within the window.

<?xml version="1.0" encoding="utf-8"?>
<AbsoluteLayout android:id="@+id/myAbsoluteLayout"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="@drawable/black"
xmlns:android="http://schemas.android.com/apk/res/
android"> <Spinner android:id="@+id/mySpinner"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_x="0px" android:layout_y="82px" >
</Spinner> <Button id="@+id/myButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:background="@drawable/darkgray"
android:text="Ok" android:layout_x="80px"
android:layout_y="122px" > </Button>
</AbsoluteLayout>

GUI
design

Android uses an XML based
markup language to define user
interface layouts, in a way that's
similar to UIML. XML is used to
create flexible interfaces which can
then be modified and wired up in
the Java code. Mozilla's XUL,
Windows Presentation Foundation
XAML, and Macromedia Flex's
MXML (and to some extent even
SVG) all operate similarly.
Each node in the XML tree
corresponds to a screen object or
layout container that will appear in
the rendered interface..from http://vis.berkeley.edu/courses/cs160-

sp08/wiki/index.php/Getting_Started_with_Android

3.1 Views, Activities, Intents, and the manifest file

An activity presents a visual user interface for one focused endeavor the
user can undertake. For example, an activity might present a list of menu
items users can choose from or it might display photographs along with
their captions. Though they work together to form a cohesive user
interface, each activity is independent of the others. An application might
consist of just one activity or, like the text messaging application just
mentioned, it may contain several.

Each activity is given a default window to draw in. Typically, the window fills
the screen, but it might be smaller than the screen and float on top of other
windows.

3.1 Views, Activities, Intents, and the manifest file

Activities

http://developer.android.com/guide/topics/fundamentals.html

Activity lifecycle
http://developer.android.com/reference/android/a
pp/Activity.html

 A service doesn't have a visual user interface, but rather runs in the
background for an indefinite period of time. For example, a service might
play background music as the user attends to other matters, or it might
fetch data over the network or calculate something and provide the result
to activities that need it.

3.1 Views, Activities, Intents, and the manifest file

Service

http://blog.gbinghan.com/2010/08/android-basics-quick-start.html

http://developer.android.com/guide/topics/fundamentals.html

Intents

3.1 Views, Activities, Intents, and the manifest file

http://developer.android.com/guide/topics/fundamentals.html

Content providers are activated when they're targeted by a request from a
ContentResolver. The other three components — activities, services,
and broadcast receivers — are activated by asynchronous
messages called intents . An intent is an object that holds the content of
the message. For activities and services, it names the action being requested
and specifies the URI of the data to act on, among other things.

An Android application is described in the file "AndroidManifest.xml".
This file contains all activities application and the required permissions for the
application. For example if the application requires network access it must be
specified here. "AndroidManifest.xml" can be thought as the deployment
descriptor for an Android application.

3.1 Views, Activities, Intents, and the manifest file

Manifest file

The Android SDK includes a comprehensive set of development tools.
These include a debugger, libraries, a handset emulator (based on
QEMU), documentation, sample code, and tutorials.

Currently supported development platforms include x86-architecture
computers running Linux (any modern desktop Linux distribution), Mac OS
X 10.4.8 or later, Windows XP or Vista. Requirements also include Java
Development Kit, Apache Ant, and Python 2.2 or later. The officially
supported integrated development environment (IDE) is Eclipse (3.2 or
later) using the Android Development Tools (ADT) Plugin, though
developers may use any text editor to edit Java and XML files then use
command line tools to create, build and debug Android applications as well
as control attached Android devices (e.g., triggering a reboot, installing
software package(s) remotely).

3.2 Android Software Development Kit (SDK)

Eclipse can be used as the IDE for Android development. To do so, you need to
install the SDK and then the: ADT (Android Development Tools)

Android Development Tools (ADT) is a plugin for the Eclipse IDE that is designed to
give you a powerful, integrated environment in which to build Android applications.

ADT extends the capabilities of Eclipse to let you quickly set up new Android
projects, create an application UI, add components based on the Android
Framework API, debug your applications using the Android SDK tools, and even
export signed (or unsigned) APKs in order to distribute your application.

3.3 Use of Eclipse for Android development

Disadvantages using Eclipse

For single screen interactive or data sensing applications, Eclipse and
the full SDK of Android might result unnecessarily complex, and
very challenging for beginners. Also, the drawing API, both in 2D
and 3D (OpenGL ES), could be time consuming to learn and use.

3.3 Use of Eclipse for Android development

From the Android section in the Processing wiki:
"The primary goal of this project is to make it foolishly easy to create
Android apps using the Processing API. Once you have Processing on
your machine (and the Android developer tools), you can simply write a line of
code, hit 'Run' (or Ctrl-R), and have your sketch show up in the emulator as a
working Android app. Select 'Present' (or use Ctrl-Shift-R) to have it run on an
Android device that you have plugged into your machine. That's good stuff!"

Solution: Processing for Android!

ProcessingEclipse

4. First steps with Processing for Android

At the time of this writing, the latest pre-release of Processing with
Android support is 0192, which you can download from this page:

http://code.google.com/p/processing/downloads/list

Since this is a pre-release, it should be considered as “alpha”
status software which contains bugs and unfinished features.
However, it is functional enough to get started with Android
development, even for 3D.

Important note: Processing for Android currently needs the
Android SDK to be manually installed beforehand, the plan is that
next releases of Processing will bundle the SDK.

Since this feature is still not implemented, we will describe in the
next slides how to install the SDK on Windows, OSX, and Linux

4.0 Current status of Processing for Android

http://code.google.com/p/processing/downloads/list

4.1 Installation of the Android SDK

Download the Android SDK from the Android
homepage under Android SDK download. The
download contains a zip file which you can extract to
any place in your file system.

Detailed instructions
http://developer.android.com/sdk/installing.html

http://developer.android.com/

http://java.sun.com/javase/downloads/index.jsp

http://processing.org/download/

http://developer.android.com/http:/processing.org/download/
http://java.sun.com/javase/downloads/index.jsp
http://processing.org/download/

4.1 Installation of the Android SDK and Processing

Windows
1. Make sure that you install the JDK (Java Development Kit) first...

2. Download latest package from
http://developer.android.com/sdk/index.html

3. Unzip package at the place of your preference…
C:\Users\andres\Coding\android-sdk-windows

4. Add the environmental variables PATH and ANDROID_SDK

5. Also, if the path to the bin folder of the JDK is not in the PATH, add it as
well.

6. The last step in setting up your SDK is running the android.exe application
included in the tools folder of the SDK. This will launch the Android SDK and
ADV Manager, which allows to download and install the rest of the required
components of the SDK.

4.1 Installation of the Android SDK and Processing

These are the minimal components of the SDK required to use
Processing for Android (SDK and APIs 7), and in windows
the Usb driver package (very important!)

This procedure is very important in Windows to be able to connect the
Android devices to Processing.

The USB driver that comes with the Android SDK provides support only
for the following (or similar) devices:

T-Mobile G1* / ADP1
T-Mobile myTouch 3G* / Google Ion
Verizon Droid*
Nexus One

After downloading the usb driver in the previous step (it gets copied to
C:\Users\andres\Coding\android-sdk-windows\usb_driver) you have to
install it following the steps indicated here:
http://developer.android.com/sdk/win-usb.html

4.1 Installation of the Android SDK and Processing

Additional step on Windows: USB driver installation

Other phones might require the USB drivers from the manufacturer
of the device. For instance, the ones for the Galaxy S are
available here:
http://forum.xda-developers.com/showthread.php?t=728929

After installation, the phone should appear in the Device Manager as
follows:

4.1 Installation of the Android SDK and Processing

http://forum.xda-developers.com/showthread.php?t=728929
http://forum.xda-developers.com/showthread.php?t=728929

4.1 Installation of the Android SDK and Processing

Setting environmental variables in Windows

Mac OSX

1. Download latest package from
http://developer.android.com/sdk/index.html

2. Unzip package at the place of your preference, for example
/Users/joe/Android/android-sdk-mac_x86

3. On a Mac OS X, look in your home directory for .bash_profile and
proceed same as for Linux. You can create the .bash_profile if you haven't
already set one up on your machine and add

4. The last step consists in setting up your SDK is running the Android SDK
and AVD Manager . You can start it from the terminal by typing android

export PATH=${PATH}:<your_sdk_dir>/tools
export ANDROID_SDK=${PATH}:<your_sdk_dir>

4.1 Installation of the Android SDK and Processing

http://developer.android.com/sdk/index.html

Make sure to install:
- SDK Platform Android 2.1, API 7
- Google APIs by Google Inc., Android API 7

4.1 Installation of the Android SDK and Processing

1. Make sure that you install the sun-java JDK first. On Ubuntu:
sudo apt-get install sun-java6-jdk

2. Download latest linux package from http://developer.android.com/sdk/index.html

3. Unzip package at the place of your preference...
/home/andres/Coding/Android/android-sdk-linux_x86
On 64 bits machine, you might need to install soma additional packages:
http://stackoverflow.com/questions/2710499/android-sdk-on-a-64-bit-linux-machine

4. Add the environmental variables PATH and ANDROID_SDK

5. On Linux, edit your ~/.bash_profile or ~/.bashrc file. Look for a line that sets the
PATH environment variable and add the full path to the tools/ directory to it. If you
don't see a line setting the path, you can add one:

export PATH=${PATH}:<your_sdk_dir>/tools
export ANDROID_SDK=<your_sdk_dir>

6. The last step consists in setting up your SDK is running the Android SDK and
AVD Manager . You can start it from the terminal by typing android

Linux

4.1 Installation of the Android SDK and Processing

4.1 Installation of the Android SDK and Processing

4.1 Installation of the Android SDK and Processing

For windows and
Linux, uncompress the
zip/tgz in the desired
location, in the case of
OSX open the dmg
package and copy to
ApplicationsProcessing website:

http://processing.org/download/

Download
Processing

4.2 Android Mode in Processing

To run our code on the Android
emulator or on the Android
device, we need to set enable
the Android mode in the
PDE.

If missing the ANDROID_SDK
variable, just select the folder
when asked

4.2 Android Mode in Processing

• Run - preprocess the current sketch, create an Android
project, and run (debug) it in the Android emulator.

• Present - the same as Run, but run on a device (phone)
that's attached by USB.

• Export - creates an 'android' folder that contains the files
necessary to build an APK using Ant.

• Export to Application - same as export, but creates a
signed version of the 'release' build.

4.2 Android Mode in Processing

Android
Emulator

4.3 Running Sketches on the emulator and the device

The device has to be properly connected to the USB port, and running at least
Android 2.1.

On Linux, you might need to run first the following commands from the terminal:
adb-killserver
cd <sdk location>/tools
sudo ./adb start-server

Type adb devices to get the list of currently connected devices.

4.3 Running Sketches on the emulator and the device

Android
Permissions

If you want to load data from the internet, or
otherwise connect to other servers, you'll need
to enable INTERNET permission for your
sketch. To do so, use Tools → Android
Permissions to bring up the permissions
editor. Check the box next to internet.

If you want to use methods
like saveStrings() or createWriter, you'll need to
enable WRITE_EXTERNAL_STORAGE so that
you can save things to the built-in flash a plug-
in card.

There are similar permissions for access to the
phone, compass, etc. Look through the list in
the permissions dialog, or check out other
documentation that explains Android
permissions in greater detail:
http://developer.android.com/guide/topics/security/security.html#permissions
http://developer.android.com/reference/android/Manifest.permission.html

4.3 Running Sketches on the emulator and the device

http://developer.android.com/guide/topics/security/security.html#permissions
http://developer.android.com/reference/android/Manifest.permission.html

5. Basic Processing use

What can we do with Processing for
Android:

• Single activity/ single view applications with no layouts!

• 2D and 3D (GPU-accelerated) graphics

• Multitouch and keyboard input

• Extensible with libraries.

• Lots of useful information in the wiki:
 http://wiki.processing.org/w/Android

 The forum is also useful site to post questions and answers:
 http://forum.processing.org/android-processing

Functions and Parameters
size(), point(), line(), Triangle(),
quad(), rect(), ellipse(), arc(), vertex()

5.1 Drawing of 2D shapes and use of color

Color
Color(), Colormode(), fill(), stroke(), Background()

http://processing.org/learning/basics/radialgradient.html

5.1 Drawing of 2D shapes and use of color

Casey Reas and Ben Fry.
<Getting Started with Processing>.
O’Really Media, 2010

5.1 Drawing of 2D shapes and use of color

Casey Reas and Ben Fry.
<Getting Started with Processing>.
O’Really Media, 2010

0(black) – 255(white)

Grayscale

5.1 Drawing of 2D shapes and use of color

Casey Reas and Ben Fry.
<Getting Started with Processing>.
O’Really Media, 2010

c ol or (gr ay)
c ol or (gr ay , al pha)
c ol or (v al ue 1, v al ue 2, v al ue 3)
c ol or (v al ue 1, v al ue 2, v al ue 3, al pha) c ol or (he x)
c ol or (he x , al pha)

5.1 Drawing of 2D shapes and use of color

Color

fill(gray), fill(gray, alpha), fill(value1, value2, value3),
fill(value1, value2, value3, alpha) fill(color),
fill(color, alpha), fill(hex) fill(hex, alpha)

5.1 Drawing of 2D shapes and use of color

<Examples from processing>

v oi d s e t up() {
pr i nt l n(“Se t up: St ar t ") ;
}
v oi d dr aw() {
pr i nt l n(" I ’ m r unni ng") ;
}
Whe n t hi s c ode i s r un, t he
f ol l owi ng i s wr i t t e n t o t he
Cons ol e :
Se t up: St ar t
I ’ m r unni ng
I ’ m r unni ng
I ’ m r unni ng
. . .

5.2 Animation and motion

Called once when the program is
started. Used to define initial
enviroment properties such as screen
size, background color, loading images,
etc. before the draw() begins
executing. Variables declared within
setup() are not accessible within other
functions, including draw(). There can
only be one setup() function for each
program and it should not be called
again after it's initial execution.

setup()

Called directly after setup() and
continuously executes the lines of code
contained inside its block until the
program is stopped or noLoop() is
called.

draw()

http://processing.org/reference/

int x=0;

void setup() {
 size(500,500);
 stroke(0);
 smooth();
 frameRate(150); //speed
}

void draw() {
 x= x+1;
 if (x > 1500) {
 x=0;
 }
 background(255);
 strokeWeight(x/4);
 fill(255,0,0);
 ellipse(x, height/2, x+100,
x+100);
 }

5.2 Animation and motion

PI mage ()
PI mage (wi dt h, he i ght)
PI mage (wi dt h, he i ght ,
f or mat)
PI mage (i mg)

5.3 Media (Images and Fonts)

PImage img1;
PImage img2;

void setup() {
 size(480, 180);
 img1 = loadImage("image1.jpg");
 img2 = loadImage("image2.JPG");
}

void draw() {
 background(0);
 image(img1,-150, 0);
 image(img1, 170, 0, 270, 180);
 image(img2, 350, 0, 500, 180);
}

Sets the current font. The
font must be loaded with
loadFont() before it can be
used. This font will be used
in all subsequent calls to the
text() function. If no size
parameter is input, the font
will appear at its original size
(the size it was created at
with the "Create Font..." tool)
until it is changed with
textSize().

5.3 Media (Images and Fonts)

size(200,100);
background(0);

PFont font;
// The font must be located in the sketch's
// "data" directory to load successfully
font = loadFont("Arial-Black-48.vlw");
textFont(font, 47);
text("Hello!", 10, height/2);
textSize(14);
text("Hello!", 10, 70);

5.3 Media (Images and Fonts)

PFont
loadFont()
textFont()
text(data, x, y) text(data, x, y, z)
text(stringdata, x, y, width, height)
text(stringdata, x, y, width, height, z)

//Click on the window to give it
//focus and press the 'B' key

void draw() {
 if(keyPressed) {
 if (key == 'b' || key == 'B') {
 fill(0);
 }
 } else {
 fill(255);
 }
 rect(25, 25, 50, 50);
}

5.4 Interaction (keyboard, touchscreen, multitouch handling)

key
keyCode
keyPressed()
keyReleased()

Keyboard

void draw() {
 if (keyPressed == true)
{
 fill(0);
 } else {
 fill(255);
 }
 rect(25, 25, 50, 50);
}

key

keyPressed()
The boolean system variable
keyPressed is true if any key is
pressed and false if no keys are
pressed.

From http://processing.org/reference/keyPressed.html

The system variable key always
contains the value of the most
recent key on the keyboard that was
used (either pressed or released).

5.4 Interaction (keyboard, touchscreen, multitouch handling)

For compatibility, mouseX and mouseY work similar to the original API,
and always contain the most recent mouse position. The following
methods:

mousePressed()
mouseReleased()
mouseMoved()
mouseDragged()

are also available.

In addition, the motionX, motionY, pmotionX, pmotionY, and
motionPressure events can be used to track relative motion (the native
way Android handles input). Unlike mouseX/mouseY, those variables
are also float values.

For more information about handling input, check the wiki page:
http://wiki.processing.org/w/Android

Touchscreen

The simplest way to handle
multitouch in Processing is by
overloading the
PApplet.surfaceTouchEvent
(MotionEvent event) method:

5.4 Interaction (keyboard, touchscreen, multitouch handling)

Another way is to use the code
from the Android Multitouch
Controller:

http://code.google.com/p/android-
multitouch-controller/

Multitouch
handling

import android.view.MotionEvent;

...
boolean surfaceTouchEvent(MotionEvent event) {
 switch (event.getAction() & MotionEvent.ACTION_MASK) {
 case MotionEvent.ACTION_POINTER_DOWN:
 // User is pressing down another finger.
 break;
 case MotionEvent.ACTION_POINTER_UP:
 // User is released one of the fingers.
 break;
 case MotionEvent.ACTION_MOVE:
 // User is moving fingers around.
 // We can calculate the distance
 // between the first two fingers, for example:
 float x = event.getX(0) - event.getX(1);
 float y = event.getY(0) - event.getY(1);
 float d = sqrt(x * x + y * y);
 break;
 }
 }
 return super.surfaceTouchEvent(event);
 }

Code snippet showing how to use the surfaceTouchEvent() method:

6. Extending Processing

Processing for Android is also extensible through user-contributed libraries.
Still a few at the moment of this writing, hopefully many more will be created in
coming months:

1) Ketai: library to handle sensors and camera:
processingandroid.org/Ketai
http://code.google.com/p/ketai/

2) APWidgets: library to use native Android UI widgets in a Processing sketch
http://code.google.com/p/apwidgets/

3) OscP5: library to send/receive OSC messages. Even though the package was
created for PC/Mac Processing, it runs on Android as well.

http://code.google.com/p/ketai/

PART II:
Fast 3D Graphics
in Processing for
Android

3D drawing in Android is handled by the GPU (Graphic
Processing Unit) of the device.

The most direct way to program 3D graphics on Android is by
means of OpenGL ES.

OpenGL ES is a cross-platform API for programming 2D and 3D
graphics on embedded devices (consoles, phones, appliances,
etc).

OpenGL ES consists in a subset of OpenGL.

More online information about OpenGL ES:
http://developer.android.com/guide/topics/graphics/opengl.html
http://www.khronos.org/opengles/

OpenGL ES

7. OpenGL and Processing

OpenGL ES is the standard 3D API the majority of the mobile platforms (Nokia, iPhone, etc.)

The graphics pipeline is the sequence of steps in the GPU from the data
(coordinates, textures, etc) provided through the OpenGL ES API to the final
image on the screen (or Frame Buffer)

The graphics pipeline on the GPU

Relationship between OpenGL and OpenGL ES

Source: http://wiki.maemo.org/OpenGL-ES

http://wiki.maemo.org/OpenGL-ES

Qualcomm Adreno

PowerVR SGX

NVidia Tegra

Mobile GPUs

Useful websites for benchmark information about mobile GPUs:
http://smartphonebenchmarks.com/
http://www.glbenchmark.com/latest_results.jsp?

Comparison of current mobile GPUs

Medium performance High performance

Qualcomm Adreno 200 (Nexus 1, HTC
Evo, Desire)

205 (Desire HD)

PowerVR SGX SGX 530 (Droid, Droid
2, DroidX)

SGX 540 (Galaxy S,
Vibrant, Captivate)

Nvidia Tegra Tegra 250 (LG Optimus
2, many upcoming
tablets)

http://smartphonebenchmarks.com/
http://www.glbenchmark.com/latest_results.jsp?

Hardware requirements for 3D in Processing for Android

1. In principle, any GPU that supports OpenGL ES 1.1

1. GPUs such as the Adreno 200 or PowerVR SVG 540/530
are recommended.

1. Older GPUs found on devices such as the G1 might work,
but the performance is limited.

1. As a general requirement for Processing, Android 2.1.
However, certain OpenGL features were missing in 2.1, so
froyo (2.2) is needed to take full advantage of the hardware.

The Android 3D (A3D)
renderer in Processing

Processing Renderers

1. In Processing for Android there is no need to use OpenGL ES
directly (although it is possible).

1. The drawing API in Processing uses OpenGL internally when
selecting the A3D (Android 3D) renderer.

1. The renderer in Processing is the module that executes all the
drawing commands.

1. During the first part of this workshop we used the A2D
renderer, which only supports 2D drawing.

1. The renderer can be specified when setting the resolution of
the output screen with the size() command:

size(width, height, renderer)
where renderer = A2D or A3D

6. If no renderer is specified, then A2D is used by default.

What A3D is not:

1) A game engine (although it can be used to create games)
2) A scene-graph manager (but one it could be built on top of it)

Let's just say that A3D is a minimal renderer for 3D graphics that follows the
emphasis on simplicity and ease of use of Processing. Although is “minimal”,
it offers some advanced functionality such as offscreen rendering, particle
systems, etc.

What A3D currently offers:

1) A simple API for constructing 3D shapes, which extends Processing's 2D mode

2) Camera, perspective, basic lighting, geometrical transformations

3) Pixel operations, texture blending and multitexturing

4) Offscreen rendering based on FBOs

5) 3D models based on VBOs

6) OpenGL-accelerated fonts

7) Model recording (direct mode drawing + VBOs)

8) Sprite-based particle systems

1. The coordinate system in Processing is defined with the X axis
running from left to right, Y axis from top to bottom and negative
Z pointing away from the screen.

2. In particular, the origin is at the upper left corner of the screen.
3. Geometrical transformations (translations, rotations and

scalings) are applied to the entire coordinate system.

8. Geometrical transformations

Casey Reas and Ben Fry.
Getting Started with P rocessing.
O’Really Media, 2010

Translations

void setup() {
 size(240, 400, A3D);
 stroke(255, 150);
}

void draw() {
 background(0);

 translate(50, 50, 0);

 noStroke();
 fill(255, 200);
 rect(60, 0, 100, 100);
}

The translate(dx, dy, dz) function
displaces the coordinate system by the
specified amount on each axis.

Rotations
Rotations have always a rotation axis that
passes through the origin of the coordinate
system. This axis could be the X, Y, Z axis, or
an arbitrary vector:

rotateX(angle)
rotateY(angle)
rotateZ(angle)
rotate(angle, vx, vy, vz)

void setup() {
 size(240, 400, A3D);
 stroke(255, 150);
}

void draw() {
 background(0);
 rotateZ(PI / 4);
 noStroke();
 fill(255, 200);
 rect(60, 0, 100, 100);
}

 Scaling

void setup() {
 size(240, 400, A3D);
 stroke(255, 150);
}

void draw() {
 background(0);
 scale(1.5, 3.0, 1.0);
 noStroke();
 fill(255, 200);
 rect(60, 0, 60, 60);
}

Scaling can be uniform (same scale factor on
each axis) or not, since the scale(sx, sy, sz)
function allows to specify different factors
along each direction.

Just a couple of important points about
geometrical transformations...

void setup() {
 size(240, 400, A3D);
 stroke(255, 150);
}

void draw() {
 background(0);
 translate(50, 50, 0);
 rotateZ(PI / 4);
 noStroke();
 fill(255, 200);
 rect(60, 0, 60, 60);
}

1. By combining translate() with rotate(), the
rotations can be applied around any
desired point.

2. The order of the transformations is
important

The transformation stack

void setup(){
 size(240, 400, A3D);
}
void draw(){
 background(0);
 translate(width/2, height/2);
 rotateY(frameCount*PI/60);
 translate(-50, -50);
 fill(255, 0, 0);
 box(100, 100, 100);
 translate(50, -50);
 fill(255, 255, 0);
 box(100, 100, 100);
 translate(-50, 50);
 fill(0, 0, 255);
 box(100, 100, 100);
 translate(50, 50);
 fill(0, 255, 0);
 box(100, 100, 100);
}

1. The transformation stack we have in the 2D mode is also available in
A3D through the functions pushMatrix() and popMatrix().

2. All the geometric transformations issued between two consecutive calls
to pushMatrix() and popMatrix() will not affect the objects drawn outside.

void setup(){
 size(240, 400, A3D);
}
void draw(){
 background(0);
 translate(width/2, height/2);
 rotateY(frameCount*PI/60);
 pushMatrix();
 translate(-50, -50);
 fill(255, 0, 0);
 box(100, 100, 100);
 popMatrix();
 pushMatrix();
 translate(50, -50);
 fill(255, 255, 0);
 box(100, 100, 100);
 popMatrix();
 pushMatrix();
 translate(50, 50);
 fill(0, 0, 255);
 box(100, 100, 100);
 popMatrix();
 pushMatrix();
 translate(-50, 50);
 fill(0, 255, 0);
 box(100, 100, 100);
 popMatrix();
}

Lets quickly code up a 3D “hello world” example with A3D...

1. Configuring the view of the scene in A3D requires
setting the camera location and the viewing volume.

2. This can be compared with setting a physical
camera in order to take a picture:

(image from the OpenGL Red Book, first edition)

camera(eyeX, eyeY, eyeZ,
 centerX, centerY, centerZ,
 upX, upY, upZ)

perspective(fov, aspect, zNear, zFar)
ortho(left, right, bottom, top, near, far)

9. Camera and perspective

void setup() {
 size(240, 400, A3D);
 fill(204);
}

void draw() {
 lights();
 background(0);
 camera(30.0, mouseY, 220.0,
 0.0, 0.0, 0.0,
 0.0, 1.0, 0.0);
 noStroke();
 box(90);
 stroke(255);
 line(-100, 0, 0, 100, 0, 0);
 line(0, -100, 0, 0, 100, 0);
 line(0, 0, -100, 0, 0, 100);
}

 Camera placement
1. The camera placement is specified by the eye position, the center of the

scene and which axis is facing upwards:
camera(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ)

2. If camera() is not called, A3D automatically does it with the following
values: width/2.0, height/2.0, (height/2.0) / tan(PI*60.0 / 360.0), width/2.0,
height/2.0, 0, 0, 1, 0.

The viewing volume is a truncated pyramid, and the convergence of the lines
towards the eye point create a perspective projection where objects located
farther away from the eye appear smaller.

perspective(fov, aspect, zNear, zFar)
perspective(PI/3.0, width/height, cameraZ/10.0, cameraZ*10.0) where cameraZ is
((height/2.0) / tan(PI*60.0/360.0)) (default values)

from http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson1.php

Perspective view

ortho(left, right, bottom, top, near, far)
ortho(0, width, 0, height, -10, 10) (default)

In this case the viewing volume is a parallelepiped. All objects with the same
dimension appear the same size, regardless of whether they are near or far
from the camera.

Orthographic view

void setup() {
 size(240, 400, A3D);
 noStroke();
 fill(204);
}

void draw() {
 background(0);
 lights();

 if(mousePressed) {
 float fov = PI/3.0;
 float cameraZ = (height/2.0) / tan(PI * fov / 360.0);
 perspective(fov, float(width)/float(height),
 cameraZ/2.0, cameraZ*2.0);
 } else {
 ortho(-width/2, width/2, -height/2, height/2, -10, 10);
 }

 translate(width/2, height/2, 0);
 rotateX(-PI/6);
 rotateY(PI/3);
 box(160);
}

A3D provides some functions for drawing predefined 3D primitives:
sphere(r), box(w, h, d)

void setup() {
 size(240, 400, A3D);
 stroke(0);
}

void draw() {
 background(0);
 translate(width/2,height/2,0);

 fill(200, 200);
 pushMatrix();
 rotateY(frameCount*PI/185);
 box(150, 150, 150);
 popMatrix();

 fill(200, 40, 100, 200);
 pushMatrix();
 rotateX(-frameCount*PI/200);
 sphere(50);
 popMatrix();
}

10. Creating 3D objects

beginShape()/endShape()

1. The beginShape()/endShape() functions allow us to create complex objects by
specifying the vertices and their connectivity (and optionally the normals and
textures coordinates for each vertex)

2. This functionality is already present in A2D, with the difference that in A3D we
can specify vertices with z coordinates.

beginShape();
vertex(30, 20, 0);
vertex(85, 20, 0);
vertex(85, 75, 0);
vertex(30, 75, 0);
endShape(CLOSE);

beginShape(TRIANGLES);
vertex(30, 75, 0);
vertex(40, 20, 0);
vertex(50, 75, 0);
vertex(60, 20, 0);
vertex(70, 75, 0);
vertex(80, 20, 0);
endShape();

Closed polygon

Individual
triangles

beginShape(TRIANGLE_STRIP);
vertex(30, 75, 0);
vertex(40, 20, 0);
vertex(50, 75, 0);
vertex(60, 20, 0);
vertex(70, 75, 0);
vertex(80, 20, 0);
vertex(90, 75, 0);
endShape();

beginShape(QUADS);
vertex(30, 20, 0);
vertex(30, 75, 0);
vertex(50, 75, 0);
vertex(50, 20, 0);
vertex(65, 20, 0);
vertex(65, 75, 0);
vertex(85, 75, 0);
vertex(85, 20, 0);
endShape();

Triangle strip

Individual
quads

Check the Processing reference for more details:
http://processing.org/reference/beginShape_.html

Texturing is an important technique in computer graphics consisting in using
an image to “wrap” a 3D object in order to simulate a specific
material, realistic "skin", illumination effects, etc.

Texturing

Basic texture mapping:

Adapted from wikipedia.org, UV mapping:
http://en.wikipedia.org/wiki/UV_mapping

Texture mapping becomes a very complex problem
when we need to texture complicated tridimensional
shapes (organic forms).

Finding the correct mapping from 2D image to 3D shape
requires mathematical techniques that takes into account
edges, folds, etc.

Image from: Ptex: Per-Face Texture Mapping for Production Rendering, by Brent Burley and Dylan Lacewell

PImage img;

void setup() {
 size(240, 240, A3D);
 img = loadImage("beach.jpg");
 textureMode(NORMAL);
}

void draw() {
 background(0);
 beginShape(QUADS);
 texture(img);
 vertex(0, 0, 0, 0, 0);
 vertex(width, 0, 0, 1, 0);
 vertex(width, height, 0, 1, 1);
 vertex(0, height, 0, 0, 1);
 endShape();
}

The texture mode can be
NORMAL or IMAGE

Depending on the texture mode, we use
normalized UV values or relative to the
image resolution.

Objects created with beginShape()/endShape() can be textured using any
image loaded into Processing with the loadImage() function or
created procedurally by manipulating the pixels individually.

Simple shape texturing

PImage img1, img2;

void setup() {
 size(240, 240, A3D);
 img1 = loadImage("beach.jpg");
 img2 = loadImage("peebles.jpg");
 textureMode(NORMAL);
 noStroke();
}

void draw() {
 background(0);
 beginShape(TRIANGLES);
 texture(img1);
 vertex(0, 0, 0, 0, 0);
 vertex(width, 0, 0, 1, 0);
 vertex(0, height, 0, 0, 1);
 texture(img2);
 vertex(width, 0, 0, 1, 0);
 vertex(width, height, 0, 1, 1);
 vertex(0, height, 0, 0, 1);
 endShape();
}

beginShape/endShape in A3D
supports setting more than one
texture for different parts of the
shape:

Ambient Diffuse Specular
From http://www.falloutsoftware.com/tutorials/gl/gl8.htm

Some more good resources about lights in OpenGL:
http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php
http://jerome.jouvie.free.fr/OpenGl/Tutorials/Tutorial12.php - Tutorial15.php
http://www.sjbaker.org/steve/omniv/opengl_lighting.html

1. A3D offers a local illumination model based on OpenGL’s model.
2. It is a simple real-time illumination model, where each light source has 4

components: ambient + diffuse + specular + emissive = total
3. This model doesn't allow the creation of shadows
4. We can define up to 8 light sources.
5. Proper lighting calculations require to specify the normals of an object

Lighting

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php

From iPhone 3D programming, by Philip Rideout.
http://iphone-3d-programming.labs.oreilly.com/ch04.html

In diffuse lighting, the angle between the normal of the
object and the direction to the light source determines
the intensity of the illumination:

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php

Ambient: Ambient light doesn't come from a specific
direction, the rays have light have bounced around so much that
objects are evenly lit from all sides. Ambient lights are almost
always used in combination with other types of lights.
ambientLight(v1, v2, v3, x, y, z)
v1, v2, v3: rgb color of the light
x, y, z position:

Directional: Directional light comes from one direction and is
stronger when hitting a surface squarely and weaker if it hits at a
a gentle angle. After hitting a surface, a directional lights scatters
in all directions.
directionalLight(v1, v2, v3, nx, ny, nz)
v1, v2, v3: rgb color of the light
nx, ny, and nz the direction the light is facing.

Light types in A3D

Point: Point light irradiates from a specific position.
pointLight(v1, v2, v3, x, y, z)
v1, v2, v3: rgb color of the light
x, y, z position:

Spot: A spot light emits lights into an emission cone by
restricting the emission area of the light source.
spotLight(v1, v2, v3, x, y, z, nx, ny, nz, angle, concentration)
v1, v2, v3: rgb color of the light
x, y, z position:
nx, ny, nz specify the direction or light
angle float: angle the spotlight cone
concentration: exponent determining the center bias of the cone

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php

There plenty of information online about
topics such as opengl lighting, which
can be translated very directly into
A3D's terminology.

Normals: each vertex needs to have a normal defined so the light
calculations can be performed correctly

Polygon winding: The ordering of the
vertices that define a face determine
which side is inside and which one is
outside. Processing uses CCW
ordering of the vertices, and the
normals we provide to it must be
consistent with this.

PVector a = PVector.sub(v2, v1);
PVector b = PVector.sub(v3, v1);
PVector n = a.cross(b);
normal(n.x, n.y, n.z);

vertex(v1.x, v1.y, v1.z);
vertex(v2.x, v2.y, v2.z);
vertex(v3.x, v3.y, v3.z);

A3D can automatically calculate the normals for you, by setting the auto normal mode to true:

 // Instantiate cubes, passing in random vals for size and position
 for (int i = 0; i< cubes.length; i++){
 cubes[i] = new Cube(int(random(-10, 10)), int(random(-10, 10)),
 int(random(-10, 10)), int(random(-140, 140)), int(random(-140, 140)),
 int(random(-140, 140)));
 }

 // Automatic normal calculation can be turned on/off.
 autoNormal(true);
 ...

Note that this calculation might not be very accurate for complex surfaces!

So we have already shape
creation, lights, textures,
camera.
We can already do quite a
few things...

Text in A3D works exactly the same as in A2D:
1. load/create fonts with loadFont/createFont
2. set current font with textFont
3. write text using the text() function

PFont fontA;
void setup() {
 size(240, 400, A3D);
 background(102);
 String[] fonts = PFont.list();
 fontA = createFont(fonts[0], 32);
 textFont(fontA, 32);
}

void draw() {
 fill(0);
 text("An", 10, 60);
 fill(51);
 text("droid", 10, 95);
 fill(204);
 text("in", 10, 130);
 fill(255);
 text("A3D", 10, 165);
}

11. 3D Text

1. The main addition in A3D is that text can be manipulated in
three dimensions.

2. Each string of text we print to the screen with text() is
contained in a rectangle that we can rotate, translate, scale,
etc.

3. The rendering of text is also very efficient because is
accelerated by the GPU (A3D internally uses OpenGL textures
to store the font characters).

 fill(0);
 pushMatrix();
 translate(rPos,10+25);
 char k;
 for(int i = 0;i < buff.length(); i++) {
 k = buff.charAt(i);
 translate(-textWidth(k),0);
 rotateY(-textWidth(k)/70.0);
 rotateX(textWidth(k)/70.0);
 scale(1.1);
 text(k,0,0);
 }
 popMatrix();

PFont font;
char[] sentence = { 'S', 'p', 'A' , 'O', '5', 'Q',
 'S', 'p', 'A' , 'O', '5', 'Q',
 'S', 'p', 'A' , 'O', '5', 'Q',
 'S', 'p', 'A' , 'O', '5', 'Q' };

void setup() {
 size(240, 400, P3D);
 font = loadFont("Ziggurat-HTF-Black-32.vlw");
 textFont(font, 32);
}

void draw() {
 background(0);

 translate(width/2, height/2, 0);

 for (int i = 0; i < 24; i++) {
 rotateY(TWO_PI / 24 + frameCount * PI/5000);
 pushMatrix();
 translate(100, 0, 0);
 //box(10, 50, 10);
 text(sentence[i], 0, 0);
 popMatrix();
 }
}

Kinetic type example

Offscreen drawing

We can create an offscreen A3D surface by using the createGraphics() method:

PGraphicsAndroid3D pg;

void setup() {
 size(480, 800, A3D);
 pg = createGraphics(300, 300, A3D);
 ...
}

The offscreen drawing can be later used as an image to texture an object or
to combine with other layers. We will see more of this at the end.

void draw() {
 pg.beginDraw();
 pg.rect(100, 100, 50, 40);
 pg.endDraw();

 ...
 cube.setTexture(pg);
 ...
}

12. Some special topics

The createGraphics() method returns a complete rendering surface that includes
RGBA color buffer as well as Z and stencil buffers.

The bit depth of these buffers depend on the configuration of the drawing
surface.
By default, A3D lets Android to choose the configuration, but we can optionally
force a specific one by using the sketchColordepth and sketchTranslucency
methods:

String sketchColordepth() {
 return "8:8:8:8:16:0";
}

boolean sketchTranslucency() {
 return true;
}

The string returned by sketchColordepth must be in the format R:G:B:A:D:S,
where R, G, B, A, D and S are the bit depths for the Red, Green, Blue and Alpha
channels of the color buffer, Z and D the bits depths of the Z and stencil buffers.

Blending

The blend(int mode) method allows to set the desired blending mode that
will be used to mix a color to be written to a pixel in screen with the color
that the pixel already has.

Currently supported blending modes in A3D are:

REPLACE
BLEND
ADD
SUBTRACT
LIGHTEST
DARKEST
DIFFERENCE
EXCLUSION
MULTIPLY
SCREEN

These modes are described in detail at
http://processing.org/reference/blend_.html

http://processing.org/reference/blend_.html

The texture() and vertex() methods are overloaded to accept more than one
texture or texture coordinates:

beginShape();
texture(tex0, tex1);
…
vertex(x, y, z, u0, v0, u1, v1);
...

The blending mode for multitextures is set with the textureBlend(mode)
function, which currently accepts the following modes:

REPLACE,
BLEND
ADD
SUBTRACT
MULTIPLY

Multitexturing (part 1)

Pixel operations

 img1 = loadImage("image1.jpg");
 img1.resize(64, 64);

 int w = 230;
 int h = 230;
 img3 = createImage(w, h, ARGB);
 int[] pix = new int[w * h];
 for (int i = 0; i < h; i++) {
 for (int j = 0; j < w; j++) {
 if (i < h /2) {
 if (j < w/2) pix[i * w + j] = 0xFFFF0000;
 else pix[i * w + j] = 0xFF00FF00;
 }else {
 if (j < w/2) pix[i * w + j] = 0xFF0000FF;
 else pix[i * w + j] = 0xFFFFFF00;
 }
 }
 }
 img3.loadPixels(); // Enables use of pixel array.
 img3.getTexture().set(pix); // Copies pix array to texture.
 img3.updateTexture(); // Copies texture to pixel array.
 for (int i = h/2 - 20; i < h/2 + 20; i++) {
 for (int j = w/2 - 20; j < w/2 + 20; j++) {
 img3.pixels[i * w + j] = 0xFFFFFFFF;
 }
 }
 img3.updatePixels(w/2 - 20, h/2 - 20, 40, 40);

 img2 = createImage(w, h, ARGB);
 img2.getTexture().set(img3.pixels);

There are several
methods to
manipulate pixels
directly, and then
transfer this
information back and
forth between CPU
arrays and GPU
textures.

Mixing A3D code and OpenGL ES code

Within Processing we can safely mixed standard A3D code
with OpenGL calls, once we get a handle to the gl object. The
GL calls must be enclosed by beginGL/endGL, which
ensures that the OpenGL states returns to what A3D expects
after using OpenGL directly:

PGraphicsAndroid3D a3d = (PGraphicsAndroid3D)g;
GL10 gl = a3d.beginGL();
...
a3d.endGL();

Nehe example

1. Normally, the data that defines a 3D object (vertices, colors, normals,
 texture coordinates) are sent to the GPU at every frame.

2. The current GPUs in mobile devices have limited bandwidth, so data
transfers can be slow.

3. If the geometry doesn’t change (often) we can use Vertex Buffer
Objects.

4. A Vertex Buffer Object is a piece of GPU memory where we can
upload the data defining an object (vertices, colors, etc.)

5. The upload (slow) occurs only once, and once the VBO is stored in
GPU memory, we can draw it without uploading it again.

6. This is similar to the concept of Textures (upload once, use multiple
times).

Vertex Buffer Objects

13 Models: the PShape3D class

For a good tutorial about VBOs, see this page:
http://www.songho.ca/opengl/gl_vbo.html

The PShape3D class in A3D encapsulates VBOs

1. The class PShape3D in A3D encapsulates a VBO and provides a simple way
to create and handle VBO data, including updates, data fetches, texturing,
loading from OBJ files, etc.

2. PShape3D has to be created with the total number of vertices know
beforehand. Resizing is possible, but slow.

3. How vertices are interpreted depends on the geometry type specified at
creation (POINT, TRIANGLES, etc), in a similar way to
beginShape()/endShape()

4. Vertices in a PShape3D can be organized in groups, to facilitate normal and
color assignment, texturing and creation of complex shapes with multiple
geometry types (line, triangles, etc).

Manual creation of PShape3D models

1. A PShape3D can be created by specifying each vertex and
associated data (normal, color, etc) manually.

2. Remember that the normal specification must be consistent with
the CW vertex ordering.

cube = createShape(36, TRIANGLES);

cube.loadVertices();
cube.set(0, -100, +100, -100);
cube.set(1, -100, -100, -100);
...
cube.updateVertices();

cube.loadColors();
cube.set(0, color(200, 50, 50, 150));
cube.set(1, color(200, 50, 50, 150));
...
cube.updateColors();

cube.loadNormals();
cube.set(0, 0, 0, -1);
cube.set(1, 0, 0, -1);
...
cube.updateNormals();

Creation Drawing
translate(width/2, height/2, 0);
shape(cube);

1. A PShape3D can be textured with one ore more images.
2. The vertices can be hierarchically organized in groups, which allows to

assign a different textures to each group.
3. Groups also facilitate the assignment of colors, normals, and styles, as well

as the application of geometrical transformations (although this feature
won't be available until release 0193 of Processing).

 cube.addChild("Face 0", 0, 5);
 cube.addChild("Face 1", 6, 11);
 cube.addChild("Face 2", 12, 17);
 cube.addChild("Face 3", 18, 23);
 cube.addChild("Face 4", 24, 29);
 cube.addChild("Face 5", 30, 35);

 cube.setNormal(0, 0, 0, -1);
 cube.setNormal(1, +1, 0, 0);
 cube.setNormal(2, 0, 0, +1);
 cube.setNormal(3, -1, 0, 0);
 cube.setNormal(4, 0, +1, 0);
 cube.setNormal(5, 0, -1, 0);

 cube.setTexture(0, loadImage("1.jpg"));
 cube.setTexture(1, loadImage("2.jpg"));
 cube.setTexture(2, loadImage("3.jpg"));
 cube.setTexture(3, loadImage("4.jpg"));
 cube.setTexture(4, loadImage("5.jpg"));
 cube.setTexture(5, loadImage("6.jpg"));

PShape object;
float rotX;
float rotY;

void setup() {
 size(480, 800, A3D);
 noStroke();
 object = loadShape("rose+vase.obj");
}

void draw() {
 background(0);
 ambient(250, 250, 250);
 pointLight(255, 255, 255, 0, 0, 200);
 translate(width/2, height/2, 400);
 rotateX(rotY);
 rotateY(rotX);
 shape(object);
}

OBJ loading

1. The OBJ format is a text-based data format to store 3D geometries. There is an
associated MTL format for materials definitions.

2. It is supported by many tools for 3D modeling (Blender, Google Sketchup, Maya, 3D
Studio). For more info: http://en.wikipedia.org/wiki/Obj

3. A3D supports loading OBJ files into PShape3D objects with the loadShape()
function.

4. Depending the extension of the file passed to loadShape (.svg or .obj) Processing
will attempt to interpret the file as either SVG or OBJ.

5. The styles active at the time of loading the shape are used to generate the geometry.

PShape bot;
PShape3D bot3D;

public void setup() {
 size(480, 800, A3D);
 bot = loadShape("bot.svg");
 bot3D = createShape(bot);
}

public void draw() {
 background(255);

 shape(bot3D, mouseX, mouseY, 100, 100);
}

Copying SVG shapes into PShape3D

Once we load an SVG file into a PShapeSVG object, we can copy
into a PShape3D for increased performance:

Direct mode versus vertex arrays in OpenGL

glBegin();
glVertex3f(1.0, 2.0, 0.0);
…
glEnd();

Now, some digression...

People like direct mode because is easy to use and intuitive. But it is
also very inefficient. We only start to take full advantage of the GPU
hardware when we move to vertex arrays, VBOs, etc.

It would be nice if we somehow can combine both...

gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 300);

So... A3D combines direct mode and VBOs with shape recording

1. Shape recording into a PShape3D object is a feature that can greatly
increase the performance of sketches that use complex geometries.

2. The basic idea of shape recording is to save the result of standard
Processing drawing calls into a Pshape3D object.

3. Recording is enabled by using the beginRecord()/endRecord() methods.
Anything that is drawn between these two calls will be stored in the
Pshape3D returned by beginRecord():

Pshape recShape;

void setup() {
 size(480, 800, A3D);
 ...
 recShape = beginRecord();
 beginShape(QUADS);
 vertex(50, 50);
 vertex(width/2, 50);
 vertex(width/2, height/2);
 vertex(50, height/2);
 endShape();
 endRecord();
}

void draw() {
 ...
 shape(recShape);
 ...
}

Pshape objects;

void setup() {
 size(480, 800, A3D);
 ...
 objects = beginRecord();
 box(1, 1, 1);
 rect(0, 0, 1, 1);
 ...
 endRecord();
}

void draw() {
 ...
 shape(objects);
 ...
}

The performance gains of using shape recording are quite substantial.
It usually increases the rendering framerate by 100% or more.

Textured sphere Birds flock

Without shape recording: 19fps
With shape recording: 55fps

Without shape recording: 7fps
With shape recording: 18fps

Earth example (w/out model recording)

Particle systems

PShape3D allows to create models with the POINT_SPRITES geometry type.
With this type, each vertex is treated as a textured point sprite.
At least one texture must be attached to the model, in order to texture the sprites.
More than sprite texture can be attached, by dividing the vertices in groups.
The position and color of the vertices can be updated in the draw loop in order to
simulate motion (we have to create the shape as DYNAMIC).

particles = createShape(1000, POINT_SPRITES, DYNAMIC);
particles.loadVertices();
for (int i =0; i < particles.getNumVertices(); i++) {
 float x = random(-30, 30);
 float y = random(-30, 30);
 float z = random(-30, 30);
 particles.set(i, x, y, z);
}
particles.updateVertices();
sprite = loadImage("particle.png");
particles.setTexture(sprite);

particles.beginUpdate(VERTICES);
for (int i =0; i < particles.getVerticesCount(); i++) {
 particles.vertices[3 * i + 0] += random(-1, 1);
 particles.vertices[3 * i + 1] += random(-1, 1);
 particles.vertices[3 * i + 2] += random(-1, 1);
}
particles.updateVertices();

Creation/initialization

Dynamic update

Multitexturing (part 2)

If a geometry is recorded with multiple textures, the resulting
PShape3D object will store all these textures and associated
texture coordinates. We can dynamically edit their values by
using the texcoords array:

 p.loadTexcoords(1);
 for (int i = 0; i < p.getVertexCount(); i++) {
 float u = p.texcoords[2 * i + 0];
 u += 0.002;
 p.texcoords[2 * i + 0] = u;
 }
 p.updateTexcoords();

To wrap up, let's look at some advanced examples where we do model
recording, particles systems, multitexturing, offscreen rendering, etc.

Very good Android tutorial: http://www.vogella.de/articles/Android/article.html

Official google resources: http://developer.android.com/index.html
SDK: http://developer.android.com/sdk/index.html
Guide: http://developer.android.com/guide/index.html
OpenGL: http://developer.android.com/guide/topics/graphics/opengl.html
Mailing list: http://groups.google.com/group/android-developers

Developers forums: http://www.anddev.org/
Book: http://andbook.anddev.org/

Cyanogenmod project: http://www.cyanogenmod.com/

GLES benchmarks: http://www.glbenchmark.com/result.jsp

Min3D (framework 3D): http://code.google.com/p/min3d/

Developer’s devices: http://www.hardkernel.com/

AppInventor: http://www.appinventor.org/

Processing resources: http://processing.org/
Processing.Android forum: http://forum.processing.org/android-processing
Processing.Android forum: http://wiki.processing.org/w/Android

Links

http://www.vogella.de/articles/Android/article.html
http://developer.android.com/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/guide/index.html
http://developer.android.com/guide/topics/graphics/opengl.html
http://groups.google.com/group/android-developers
http://www.anddev.org/
http://andbook.anddev.org/
http://www.cyanogenmod.com/
http://www.glbenchmark.com/result.jsp
http://code.google.com/p/min3d/
http://www.hardkernel.com/
http://www.appinventor.org/
http://processing.org/
http://forum.processing.org/android-processing
http://wiki.processing.org/w/Android

Books Hello, Android: Introducing Google's Mobile Development
Platform
Ed Burnette
Pragmatic Bookshelf; 3 edition (July 20, 2010)

Professional Android 2 Application Development
Rato Meier
Wrox; 1 edition (March 1, 2010)

Pro Android 2
Sayed Hashimi

Getting Started with Processing
Casey Reas and Ben Fry.
Published June 2010, O'Reilly Media.

Processing: A Programming Handbook for Visual Designers and
Artists
Casey Reas and Ben Fry
Published August 2007, MIT Pres

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148

