Introduction to
‘Processing

on Android devices

WWWW‘
F‘“‘"F"‘ F""" ~ il srriealin

The Android 3D (A3D)
renderer in Processing

By Andres Colubri

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Processing Renderers

. In Processing for Android there is no need to use OpenGL ES
directly (although it is possible).

. The drawing APl in Processing uses OpenGL internally when
selecting the A3D (Android 3D) renderer.

. The renderer in Processing is the module that executes all the
drawing commands.

During the first part of this workshop we used the A2D
renderer, which only supports 2D drawing.

. The renderer can be specified when setting the resolution of
the output screen with the size() command:
size(width, height, renderer)
where renderer = A2D or A3D

6. If no renderer is specified, then A2D is used by default.

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

What A3D is not:

1) A game engine (although it can be used to create games)
2) A scene-graph manager (but one it could be built on top of it)

Let's just say that A3D is a minimal renderer for 3D graphics that follows the
emphasis on simplicity and ease of use of Processing. Although is “minimal’,
it offers some advanced functionality such as offscreen rendering, particle

systems, etc.

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

What A3D currently offers:

1) A simple API for constructing 3D shapes, which extends Processing's 2D mode
2) Camera, perspective, basic lighting, geometrical transformations

3) Pixel operations, texture blending and multitexturing

4) Offscreen rendering based on FBOs

5) 3D models based on VBOs

6) OpenGL-accelerated fonts

7) Model recording (direct mode drawing + VBOs)

8) Sprite-based particle systems

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

8. Geometrical transformations

.flﬂﬂrﬂ‘, -100)

(100,0,0)

Y

> +X

*(100, 100, -100)

Casey Reas and Ben Fry.
(6,100,0) I Getting Started with Processing.
AR (100, 100, 0) O'Really Mediq, 2010

]
e

+Y

The coordinate system in Processing is defined with the X axis
running from left to right, Y axis from top to bottom and negative
Z pointing away from the screen.

In particular, the origin is at the upper left corner of the screen.
Geometrical transformations (translations, rotations and
scalings) are applied to the entire coordinate system.

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Translations
The translate(dx, dy, dz) function
displaces the coordinate system by the
specified amount on each axis.
|
| |
void setup () { ..

size (240, 400, A3D);
stroke (255, 150);

HE
} HEEEEEEEE
HEEEEEEEE

void draw () {
background (0) ;

translate (50, 50, 0);
noStroke () ;

fill (255, 200);
rect (60, 0, 100, 100);

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Rotations

Rotations have always a rotation axis that
passes through the origin of the coordinate
system. This axis could be the X, Y, Z axis, or
an arbitrary vector:

rotateX (angle)
rotateY (angle)
rotateZ (angle)
rotate (angle, vx, vy, VvZz)

void setup () {
size (240, 400, A3D);
stroke (255, 150);

}

void draw () {
background (0) ;
rotateZ (PI / 4);
noStroke () ;
£i11 (255, 200);
rect (60, 0, 100, 100);

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Scaling

Scaling can be uniform (same scale factor on
each axis) or not, since the scale(sx, sy, sz)
function allows to specify different factors
along each direction.

void setup () {
size (240, 400, A3D);
stroke (255, 150);

}

void draw () {
background (0) ;
scale(l.5, 3.0, 1.0);
noStroke () ;
£fil1l (255, 200);
rect (60, 0, ©0, 60);

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Just a couple of important points about
geometrical transformations...

1. By combining translate() with rotate(), the
rotations can be applied around any
desired point.

The order of the transformations is
important

void setup() {
size (240, 400, A3D);
stroke (255, 150);

}

void draw () {
background (0) ;
translate (50, 50, 0);
rotateZ (PI / 4);
noStroke () ;
£1i11 (255, 200);
rect (60, 0, 60, 60);

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

The transformation stack

1. The transformation stack we have in the 2D mode is also available in
A3D through the functions pushMatrix() and popMatrix().

2. All the geometric transformations issued between two consecutive calls
to pushMatrix() and popMatrix() will not affect the objects drawn outside.

void setup () {
size (240, 400, A3D);

}

void draw () {
background (0) ;
translate (width/2, height/2);
rotateY (frameCount*PI/60) ;
translate (=50, -50);
£fi11 (255, 0, 0);
box (100, 100, 100);
translate (50, -=-50);
£111 (255, 255, 0);
box (100, 100, 100);
translate (=50, 50);
£111 (0, 0, 255);
box (100, 100, 100);
translate (50, 50);
£fi11 (0, 255, 0);
box (100, 100, 100);

}

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

void setup () {
size (240, 400, A3D);

}

void draw () {
background (0) ;
translate (width/2, height/2);
rotateY (frameCount*PI/60) ;
pushMatrix () ;
translate (=50, -50);
£fill (255, 0, 0);
box (100, 100, 100);
popMatrix () ;
pushMatrix () ;
translate (50, -50);
fill (255, 255, 0);
box (100, 100, 100);
popMatrix () ;
pushMatrix () ;
translate (50, 50);
£fi11 (0, 0, 255);
box (100, 100, 100);
popMatrix () ;
pushMatrix () ;
translate (=50, 50);
£fi11 (0, 255, 0);
box (100, 100, 100);
popMatrix () ;

}

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Lets quickly code up a 3D “hello world” example with A3D...

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

9. Camera and perspective

Configuring the view of the scene in A3D requires
setting the camera location and the viewing volume.
This can be compared with setting a physical
camera in order to take a picture:

With a Camera With a Computer

wiewing
camera (eyeX, eyeY, eyez,
centerX, centerY, centerz,
upX, upY, upZ)

positioning the viewing volume
in the world

positioning the models
in the warld

projection

perspective (fov, aspect, zNear, zFar)
ortho(left, right, bottom, top, near, far

determining shape of viewing wvolume

photograph wiewport

(image from the OpenGL Red Book, first edition)

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Camera placement

1. The camera placement is specified by the eye position, the center of the
scene and which axis is facing upwards:
camera(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ)
If camera() is not called, A3D automatically does it with the following

values: width/2.0, height/2.0, (height/2.0) / tan(P1*60.0 / 360.0), width/2.0,
height/2.0, 0, 0, 1, 0.

void setup () {
size (240, 400, A3D);
£111(204) ;

}

void draw () {

lights () ;

background (0) ;

camera (30.0, mouseY, 220.0,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

noStroke () ;

box (90) ;

stroke (255) ;

line(-100, 0, O,

line (0, =100, O,

line (0, 0, =100,

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Perspective view

The viewing volume is a truncated pyramid, and the convergence of the lines
towards the eye point create a perspective projection where objects located
farther away from the eye appear smaller.

from http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson1.php

perspective(fov, aspect, zNear, zFar)
perspective(PI/3.0, width/height, cameraZ/10.0, cameraZ*10.0) where cameraZ is

((height/2.0) / tan(P1*60.0/360.0)) (default values)

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Orthographic view

In this case the viewing volume is a parallelepiped. All objects with the same
dimension appear the same size, regardless of whether they are near or far

from the camera.

the
viewport

Viewing Volume
bottom /

near far

ortho(left, right, bottom, top, near, far)
ortho(0, width, 0, height, -10, 10) (default)

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

void setup () {
size (240, 400, A3D);
noStroke () ;
£111(204);

}

void draw () {
background (0) ;
lights ()

if (mousePressed) {
float fov = PI/3.0;
float cameraZ = (height/2.0) / tan(PI * fov / 360.0);
perspective (fov, float (width)/float (height),
cameraZ/2.0, cameraz*2.0);
} else {
ortho (-width/2, width/2, -height/2, height/2, -10, 10);
}

translate (width/2, height/2, 0);
rotateX (-PI/6);

rotateY (PI/3);

box (160) ;

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

10. Creating 3D objects

A3D provides some functions for drawing predefined 3D primitives:
sphere(r), box(w, h, d)

void setup () {
size (240, 400, A3D);
stroke (0) ;

}

void draw () {
background (0) ;
translate (width/2,height/2,0);

£111 (200, 200);
pushMatrix (),

rotateY (frameCount*PI/185);
box (150, 150, 150);
popMatrix () ;

£fi11 (200, 40, 100, 200);
pushMatrix (),
rotateX (-frameCount*PI/200) ;
sphere (50) ;
popMatrix () ;

}

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

beginShape()/endShape()

1. The beginShape()/endShape() functions allow us to create complex objects by
specifying the vertices and their connectivity (and optionally the normals and
textures coordinates for each vertex)

This functionality is already present in A2D, with the difference that in A3D we
can specify vertices with z coordinates.

beginShape () ;

vertex (30, 20,

vertex (85, 20,

vertex (85, 75, 0); Closed polygon
vertex (30, 75, ;

endShape (CLOSE) ;

beginShape (TRIANGLES) ;
vertex (30, 75,

vertex (40, 20,

vertex (50, 75,

vertex (60, 20,
(70

vertex 75,
vertex (80, 20,

endShape () ; Individual

triangles

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

SIGGRAPH ASIA 2010

beginShape (TRIANGLE STRIP) ;

vertex (30,
vertex (40
vertex (50
vertex (60,
vertex (70
vertex (80
vertex (90,
endShape () ;

75,
20,
75,
20,
75,
20,
75,

Triangle strip

beginShape (QUAD

vertex (30,
vertex (30
vertex (50
vertex (50,
(65
(65
(85

vertex
vertex
vertex
vertex (85,
endShape () ;

20,
75,
715,
20,
20,

;g Individual

20, : quads

Check the Processing reference for more details:
http://processing.org/reference/beginShape_.html

// Introduction to Processing on Android Devices

Texturing

Texturing is an important technique in computer graphics consisting in using
an image to “wrap” a 3D object in order to simulate a specific
material, realistic "skin", illumination effects, etc.

1 2
2] 4
EY 5
4 6
5 7
5 8
7 [
8 o
9 2
ol 3
2 4
3 5

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Basic texture mapping:

3D object

/10
/

[
-1

Texture

Adapted from wikipedia.org, UV mapping:
http://en.wikipedia.org/wiki/UV_mapping

SIGGRAPH ASIA 2010 /! Introduction to Processing on Android Devices

Texture mapping becomes a very complex problem
when we need to texture complicated tridimensional
shapes (organic forms).

Finding the correct mapping from 2D image to 3D shape
requires mathematical techniques that takes into account
edges, folds, etc.

Image from: Ptex: Per-Face Texture Mapping for Production Rendering, by Brent Burley and Dylan Lacewell

SIGGRAPH ASIA 2010 /1 Introduction to Processing on Android Devices

Simple shape texturing

Objects created with beginShape()/endShape() can be textured using any
image loaded into Processing with the loadlmage() function or
created procedurally by manipulating the pixels individually.

PImage img;

void setup() {
size (240, 240, A3D);
img = loadImage ("beach.jpg"); The texture mode can be
textureMode|(NORMAL)|; NORMAL or IMAGE

}

volid draw () {
background (0) ;
beginShape (QUADS) ;
texture (img) ;
vertex (0, 0, 0, 0, 0): Depending on the texture mode, we use
vertex (width, 0, 0,1, 0); normalized UV values or relative to the
vertex (width, height; ; image resolution.
vertex (0, height, O,
endShape () ;

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

SIGGRAPH ASIA 2010

beginShape/endShape in A3D PImage imgl, img2;

supports setting more than one

texture for different parts of the void setup() {

shape: size (240, 240, A3D);
imgl = loadImage ("beach.jpg");
img2 = loadImage ("peebles.jpg"):;
textureMode (NORMAL) ;
noStroke () ;

}

void draw () {
background (0) ;
beginShape (TRIANGLES) ;
texture (imgl) ;
vertex (0, 0, 0, O,
vertex (width, O,
vertex (0, height,
texture (img2) ;
vertex (width, 0, 0, 1,
vertex (width, height,
vertex (0, height, O,
endShape () ;

ing on Android Devices

Lighting

A3D offers a local illumination model based on OpenGL’s model.

It is a simple real-time illumination model, where each light source has 4
components: ambient + diffuse + specular + emissive = total

This model doesn't allow the creation of shadows

We can define up to 8 light sources.

Proper lighting calculations require to specify the normals of an object

Ambient Diffuse Specular

From http://www.falloutsoftware.com/tutorials/gl/gl8.htm

Some more good resources about lights in OpenGL:

http://jerome.jouvie.free.fr/OpenGl/Tutorials/Tutorial12.php - Tutorial15.php
http://www.sjbaker.org/steve/omniv/opengl_lighting.html

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php

In diffuse lighting, the angle between the normal of the
object and the direction to the light source determines
the intensity of the illumination:

Light source ~

Diffuse component

Ambient component

From iPhone 3D programming, by Philip Rideout.
http://iphone-3d-programming.labs.oreilly.com/ch04 .html

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php

Light types in A3D

Ambient: Ambient light doesn't come from a specific
direction, the rays have light have bounced around so much that
objects are evenly lit from all sides. Ambient lights are almost
always used in combination with other types of lights.
ambientLight(v1, v2, v3, X, y, z)

v1, v2, v3: rgb color of the light

X, Y, Z position:

Directional: Directional light comes from one direction and is
stronger when hitting a surface squarely and weaker if it hits at a
a gentle angle. After hitting a surface, a directional lights scatters
in all directions.

directionalLight(v1, v2, v3, nx, ny, nz)

v1, v2, v3: rgb color of the light

nx, ny, and nz the direction the light is facing.

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Point: Point light irradiates from a specific position.
pointLight(v1, v2, v3, X, y, z)

v1, v2, v3: rgb color of the light

X, Y, Z position:

Spot: A spot light emits lights into an emission cone by
restricting the emission area of the light source.

spotLight(v1, v2, v3, X, y, z, nx, ny, nz, angle, concentration)

v1, v2, v3: rgb color of the light

X, Y, Z position:

nx, ny, nz specify the direction or light

angle float: angle the spotlight cone

concentration: exponent determining the center bias of the cone

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

There plenty of information online about
topics such as opengl lighting, which
can be translated very directly into
A3D's terminology.

Positional light Directional light
source Source

7
5 7

(x,y, Z) position
(x,y, Z) direction

Positional light Spot
source

\ » o

/1N

http://jerome.jouvie.free.fr/fOpenGl/Lessons/Lesson6.php

GL_SPOT_CUTOFF -~

GL_SPOT_DIRECTION

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Normals: each vertex needs to have a normal defined so the light
calculations can be performed correctly

PVector a = PVector.sub(v2, vl);
PVector b = PVector.sub(v3, vl);
PVector n = a.cross (b);
normal (n.x, n.y, n.z);

vertex(vl.x, vl.y, vl.z);
vertex(v2.x, v2.y, Vv2.2);
vertex(v3.x, v3.y, v3.z);

Polygon winding: The ordering of the
vertices that define a face determine
which side is inside and which one is
outside. Processing uses CCW
ordering of the vertices, and the
normals we provide to it must be

consistent with this. ;ﬂx

Wi Wl
counterclockwlas clockwise winding

winding {(default]

CCW CW

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

A3D can automatically calculate the normals for you, by setting the auto normal mode to true:

// Instantiate cubes, passing in random vals for size and position

for (int 1 = 0; i< cubes.length; 1i++) {
cubes[i] = new Cube(int (random(-10, 10)), int(random(-10, 10)),
int (random (=10, 10)), int(random(-140, 140)), int (random(-140, 140)),
int (random (=140, 140)));

// Automatic normal calculation can be turned on/off.
autoNormal (true) ;

Note that this calculation might not be very accurate for complex surfaces!

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

So we have already shape
creation, lights, textures,
camera.

We can already do quite a
few things...

SIGGRAPH ASIA 2010 /! Introduction to Processing on Android Devices

11. 3D Text

Text in A3D works exactly the same as in A2D:
1. load/create fonts with loadFont/createFont
2. set current font with textFont

3. write text using the text() function

PFont fontA;

void setup () {
size (240, 400, A3D);
background (102) ;

String[] fonts PFont.list () ;
fontA = createFont (fonts[0], 32);
textFont (fontA, 32);

}

void draw () {
£fi11(0);

text ("An", 10, 60);
£fill(51);
text ("droid", 10, 95);
£fi11(204);
text ("in", 10, 130);
£fil1l(255);

(

text ("A3D", 10, 165);

SIGGRAPH ASIA 2010 ntroducti r ing on Android Devices

The main addition in A3D is that text can be manipulated in
three dimensions.

Each string of text we print to the screen with text() is
contained in a rectangle that we can rotate, translate, scale,
etc.

The rendering of text is also very efficient because is
accelerated by the GPU (A3D internally uses OpenGL textures
to store the font characters).

£f1i11(0);

pushMatrix () ;

translate (rPos, 10+25);

char k;

for(int 1 = 0;1 < buff.length(); i++) {
k = buff.charAt(i);
translate (-textWidth(k),0);
rotateY (-textWidth (k) /70.0) ;
rotateX (textWidth (k) /70.0) ;
scale(1.1);
text (k,0,0);

}

popMatrix () ;

SIGGRAPH ASIA 2010 /1 Introduction to Processing on Android Devices

PFont font;
char[] sentence = { 'S"',

'S',

void setup() {
size (240, 400, P3D);
font = loadFont ("Ziggurat-HTF-Black-32.v1w");
textFont (font, 32);

}

void draw () {
background (0) ;

translate (width/2, height/2, 0);

for (int i = 0; 1 < 24; i++) {
rotateY (TWO PI / 24 + frameCount * PI/5000);
pushMatrix () ;
translate (100, 0, 0);
//box (10, 50, 10);
text (sentence[i], 0, 0);
popMatrix () ;

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Kinetic type example

the l’nes of text ke

are so happy

that they want to dance
or leave the page or jump
can you blame them?
living on the page like that
waiting to be read...

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

12. Some special topics

Offscreen drawing

We can create an offscreen A3D surface by using the createGraphics() method:
PGraphicsAndroid3D pg;

void setup () {
size (480, 800, A3D);
pg = createGraphics (300, 300, A3D);

The offscreen drawing can be later used as an image to texture an object or
to combine with other layers. We will see more of this at the end.

void draw () {
pg.beginDraw () ;
pg.rect (100, 100, 50, 40);

pg.endDraw () ;

cube.setTexture (pg) ;

}

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

The createGraphics() method returns a complete rendering surface that includes
RGBA color buffer as well as Z and stencil buffers.

The bit depth of these buffers depend on the configuration of the drawing
surface.

By default, A3D lets Android to choose the configuration, but we can optionally
force a specific one by using the sketchColordepth and sketchTranslucency

methods:

String sketchColordepth () {
return "8:8:8:8:16:0";
}

boolean sketchTranslucency () {
return true;

}

The string returned by sketchColordepth must be in the format R:G:B:A:D:S,
where R, G, B, A, D and S are the bit depths for the Red, Green, Blue and Alpha
channels of the color buffer, Z and D the bits depths of the Z and stencil buffers.

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Blending

The blend(int mode) method allows to set the desired blending mode that
will be used to mix a color to be written to a pixel in screen with the color
that the pixel already has.

Currently supported blending modes in A3D are:

REPLACE
BLEND

ADD
SUBTRACT
LIGHTEST
DARKEST
DIFFERENCE
EXCLUSION
MULTIPLY
SCREEN

These modes are described in detail at

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

http://processing.org/reference/blend_.html

Multitexturing (part 1)

The texture() and vertex() methods are overloaded to accept more than one
texture or texture coordinates:

beginShape() ;
texture (tex0, texl);

vertex(x, vy, z, u0, v0O, ul, vl);

The blending mode for multitextures is set with the textureBlend(mode)
function, which currently accepts the following modes:

REPLACE,
BLEND
ADD
SUBTRACT
MULTIPLY

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

SIGGRAPH ASIA 2010

Pixel operations

There are several
methods to
manipulate pixels
directly, and then
transfer this
information back and
forth between CPU
arrays and GPU
textures.

imgl = loadImage ("imagel.jpg");
imgl.resize (64, 64);

int w = 230;
int h = 230;
img3 = createlmage (w, h, ARGB);
int[] pix = new int[w * h];
for (int i1 = 0; 1 < h; i++) {
for (int 7 = 0; J < w; J++) {
if (1 <h /2) {
if (3 < w/2) pix[i * w + j] = OxXFFFF0000;
else pix[1i * w + j] = OxFFOOFFO0O;
lelse {
if (J < w/2) pix[i * w + j] = OxFFOOOOFF;
else pix[i * w + j] = OxXFFFFFF0O;
}
}
}

img3.loadPixels () ; // Enables use of pixel array.
img3.getTexture () .set (pix); // Copies pix array to texture.
img3.updateTexture () ; // Copies texture to pixel array.
for (int 1 = h/2 - 20; 1 < h/2 + 20; i++) {
for (int j = w/2 - 20; 7 < w/2 + 20; j++) {
img3.pixels[i * w + J] = OxFFFFFFFF;
}

}
img3.updatePixels (w/2 - 20, h/2 - 20, 40, 40);

img2 = createImage(w, h, ARGB);
img2.getTexture () .set (img3.pixels);

// Introduction to Processing on Android Devices

Mixing A3D code and OpenGL ES code

Nehe example

Within Processing we can safely mixed standard A3D code
with OpenGL calls, once we get a handle to the gl object. The
GL calls must be enclosed by beginGL/endGL, which
ensures that the OpenGL states returns to what A3D expects
after using OpenGL directly:

PGraphicsAndroid3D a3d = (PGraphicsAndroid3D)g;
GL10 gl = a3d.beginGL () ;

a3d.endGL () ;

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

13 Models: the PShape3D class

Vertex Buffer Objects

. Normally, the data that defines a 3D object (vertices, colors, normals,
texture coordinates) are sent to the GPU at every frame.

. The current GPUs in mobile devices have limited bandwidth, so data
transfers can be slow.

. If the geometry doesn’t change (often) we can use Vertex Buffer
Objects.

. A Vertex Buffer Object is a piece of GPU memory where we can
upload the data defining an object (vertices, colors, etc.)

. The upload (slow) occurs only once, and once the VBO is stored in
GPU memory, we can draw it without uploading it again.

. This is similar to the concept of Textures (upload once, use multiple
times).

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

.

——

Each Frame

For a good tutorial about VBOs, see this page:
http://www.songho.ca/opengl/gl_vbo.html

SIGGRAPH ASIA 2010 /! Introduction to Processing on Android Devices

The PShape3D class in A3D encapsulates VBOs

GPU memory

The class PShape3D in A3D encapsulates a VBO and provides a simple way
to create and handle VBO data, including updates, data fetches, texturing,
loading from OBJ files, etc.

PShape3D has to be created with the total number of vertices know
beforehand. Resizing is possible, but slow.

How vertices are interpreted depends on the geometry type specified at
creation (POINT, TRIANGLES, etc), in a similar way to
beginShape()/endShape()

Vertices in a PShape3D can be organized in groups, to facilitate normal and
color assignment, texturing and creation of complex shapes with multiple
geometry types (line, triangles, etc).

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Manual creation of PShape3D models

1. A PShape3D can be created by specifying each vertex and
associated data (normal, color, etc) manually.

2. Remember that the normal specification must be consistent with
the CW vertex ordering.

Creation Drawing

translate (width/2, height/2, 0);
cube = createShape (36, TRIANGLES) ; shape (cube) ;

cube.loadVertices () ;
cube.set (0, -100, +100, -100);
cube.set (1, -100, -100, -100);

cube.updateVertices () ;
cube.loadColors () ;

cube.set (0, color(
cube.set (1, color(

200, 50, 50, 150));
200, 50, 50, 150));

cube.updateColors () ;

cube.loadNormals () ;
cube.set (0, 0, 0, -1);
cube.set (1, 0, 0, -1);

cube.updateNormals () ;

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

A PShape3dD can be textured with one ore more images.

The vertices can be hierarchically organized in groups, which allows to
assign a different textures to each group.

Groups also facilitate the assignment of colors, normals, and styles, as well
as the application of geometrical transformations (although this feature
won't be available until release 0193 of Processing).

cube.addChild
cube.addChild/(
cube.addChild(
(
(
(

cube.addChild
cube.addChild
cube.addChild

cube.setNormal
cube.setNormal
cube.setNormal
cube.setNormal
cube.setNormal
cube.setNormal

SIGGRAPH ASIA 2010

cube.
cube.
cube.
cube.
cube.
cube.

setTexture
setTexture
setTexture
setTexture
setTexture
setTexture

loadImage ("1
loadImage ("2
loadImage("B.
loadImage ("4
loadImage ("5

("6

loadImage

// Introduction to Processing on Android Devices

OBJ loading

1. The OBJ format is a text-based data format to store 3D geometries. There is an
associated MTL format for materials definitions.

2. ltis supported by many tools for 3D modeling (Blender, Google Sketchup, Maya, 3D
Studio). For more info: http://en.wikipedia.org/wiki/Obj
A3D supports loading OBJ files into PShape3D objects with the loadShape()
function.
Depending the extension of the file passed to loadShape (.svg or .obj) Processing
will attempt to interpret the file as either SVG or OBJ.
The styles active at the time of loading the shape are used to generate the geometry.

PShape object;
float rotX;
float rotyY;

void setup () {
size (480, 800, A3D);
noStroke () ;
object = loadShape ("rosetvase.obj");

}

void draw () {
background (0) ;
ambient (250, 250, 250);
pointLight (255, 255, 255, 0, 0, 200);
translate (width/2, height/2, 400);
rotateX (rotY) ;
rotateY (rotX) ;
shape (object) ;
}

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Copying SVG shapes into PShape3D

Once we load an SVG file into a PShapeSVG object, we can copy
into a PShape3dD for increased performance:

PShape bot;
PShape3D bot3D;

public void setup() {
size (480, 800, A3D);
bot = loadShape ("bot.svg");
bot3D = createShape (bot) ;

}

public void draw () {
background (255) ;

shape (bot3D, mouseX, mouseY, 100, 100);
}

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Now, some digression...

Direct mode versus vertex arrays in OpenGL

glBegin () ;
glVertex3f (1.0, 2.0, 0.0); gl.glDrawArrays (GL10.GL TRIANGLES, 0, 300);

glEnd () ;

People like direct mode because is easy to use and intuitive. But it is
also very inefficient. We only start to take full advantage of the GPU
hardware when we move to vertex arrays, VBOs, etc.

It would be nice if we somehow can combine both...

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

So... A3D combines direct mode and VBOs with shape recording

1. Shape recording into a PShape3D object is a feature that can greatly
increase the performance of sketches that use complex geometries.

2. The basic idea of shape recording is to save the result of standard
Processing drawing calls into a Pshape3D object.

3. Recording is enabled by using the beginRecord()/endRecord() methods.
Anything that is drawn between these two calls will be stored in the
Pshape3D returned by beginRecord():

Pshape recShape; Pshape objects;

void setup () { void setup () {
size (480, 800, A3D); size (480, 800, A3D);

recShape = beginRecord(); objects = beginRecord() ;

beginShape (QUADS) ; box (1, 1, 1);

vertex (50, 50); rect (0, 0, 1, 1);

vertex (width/2, 50); . ..

vertex (width/2, height/2); endRecord () ;

vertex (50, height/2); }

endShape () ;

endRecord () ; void draw () {
} e
shape (objects) ;
void draw () {

shape (recShape) ;

}

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

The performance gains of using shape recording are quite substantial.
It usually increases the rendering framerate by 100% or more.

Textured sphere Birds flock

Without shape recording: 19fps Without shape recording: 7fps
With shape recording: 55fps With shape recording: 18fps

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

Earth example (w/out model recording)

SIGGRAPH ASIA 2010 /! Introduction to Processing on Android Devices

SIGGRAPH ASIA 2010

Particle systems

PShape3D allows to create models with the POINT_SPRITES geometry type.
With this type, each vertex is treated as a textured point sprite.

At least one texture must be attached to the model, in order to texture the sprites.
More than sprite texture can be attached, by dividing the vertices in groups.

The position and color of the vertices can be updated in the draw loop in order to
simulate motion (we have to create the shape as DYNAMIC).

particles = createShape (1000, POINT SPRITES, DYNAMIC);

particles.loadVertices();

for (int i1 =0; 1 < particles.getNumVertices(); i++) {
float x = random(-30, 30)
float y = random(-30, 30)
float z = random(-30, 30)
particles.set (i, x, vy, z)

}

particles.updateVertices () ;

sprite = loadlmage ("particle.png”); Creation/initialization

particles.setTexture (sprite);

4
.
4
.
14
.
14

particles.beginUpdate (VERTICES) ;
for (int i =0; 1 < particles.getVerticesCount ()
particles.vertices[3 * 1 + 0] += random(-1,
_l’
_1’

4

++) |

particles.vertices[3 * 1 + 1] += random/(
particles.vertices[3 * 1 + 2] += random/(

i
)
)
)

}
particles.updateVertices () ; DynamiC update

// Introduction to Processing on Android Devices

Multitexturing (part 2)

If a geometry is recorded with multiple textures, the resulting
PShape3D object will store all these textures and associated
texture coordinates. We can dynamically edit their values by
using the texcoords array:

p.loadTexcoords (1) ;

for (int 1 = 0; 1 < p.getVertexCount (), i++) {
float u = p.texcoords[2 * 1 + 0];
u += 0.002;
p.texcoords[2 * 1 + 0] = u;

}

p.updateTexcoords () ;

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

To wrap up, let's look at some advanced examples where we do model
recording, particles systems, multitexturing, offscreen rendering, etc.

SIGGRAPH ASIA 2010 // Introduction to Processing on Android Devices

SIGGRAPH ASIA 2010

Very good Android tutorial:

Official google resources:
SDK:

Guide:

OpenGL:

Mailing list:

Developers forums:
Book:

Cyanogenmod project:

GLES benchmarks:
Min3D (framework 3D):
Developer’s devices:
Applnventor:
Processing resources:

Processing.Android forum:
Processing.Android forum:

// Introduction to Processing on Android Devices

http://www.vogella.de/articles/Android/article.html
http://developer.android.com/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/guide/index.html
http://developer.android.com/guide/topics/graphics/opengl.html
http://groups.google.com/group/android-developers
http://www.anddev.org/
http://andbook.anddev.org/
http://www.cyanogenmod.com/
http://www.glbenchmark.com/result.jsp
http://code.google.com/p/min3d/
http://www.hardkernel.com/
http://www.appinventor.org/
http://processing.org/
http://forum.processing.org/android-processing
http://wiki.processing.org/w/Android

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

